| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpfo.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) |
| 3 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 4 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
| 5 |
1
|
grpoass |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) ) ) |
| 6 |
2 3 4 3 5
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 ) = ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 → ( 𝐴 𝐺 ( 𝑦 𝐺 𝐴 ) ) = ( 𝐴 𝐺 𝑈 ) ) |
| 8 |
6 7
|
sylan9eq |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 ) = ( 𝐴 𝐺 𝑈 ) ) |
| 9 |
|
oveq1 |
⊢ ( ( 𝐴 𝐺 𝑦 ) = 𝑈 → ( ( 𝐴 𝐺 𝑦 ) 𝐺 𝐴 ) = ( 𝑈 𝐺 𝐴 ) ) |
| 10 |
8 9
|
sylan9req |
⊢ ( ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑦 𝐺 𝐴 ) = 𝑈 ) ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) → ( 𝐴 𝐺 𝑈 ) = ( 𝑈 𝐺 𝐴 ) ) |
| 11 |
10
|
anasss |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) → ( 𝐴 𝐺 𝑈 ) = ( 𝑈 𝐺 𝐴 ) ) |
| 12 |
11
|
r19.29an |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑦 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑦 ) = 𝑈 ) ) → ( 𝐴 𝐺 𝑈 ) = ( 𝑈 𝐺 𝐴 ) ) |