| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpfo.1 |  |-  X = ran G | 
						
							| 2 |  | simpll |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> G e. GrpOp ) | 
						
							| 3 |  | simplr |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> A e. X ) | 
						
							| 4 |  | simpr |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> y e. X ) | 
						
							| 5 | 1 | grpoass |  |-  ( ( G e. GrpOp /\ ( A e. X /\ y e. X /\ A e. X ) ) -> ( ( A G y ) G A ) = ( A G ( y G A ) ) ) | 
						
							| 6 | 2 3 4 3 5 | syl13anc |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) -> ( ( A G y ) G A ) = ( A G ( y G A ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( ( y G A ) = U -> ( A G ( y G A ) ) = ( A G U ) ) | 
						
							| 8 | 6 7 | sylan9eq |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( y G A ) = U ) -> ( ( A G y ) G A ) = ( A G U ) ) | 
						
							| 9 |  | oveq1 |  |-  ( ( A G y ) = U -> ( ( A G y ) G A ) = ( U G A ) ) | 
						
							| 10 | 8 9 | sylan9req |  |-  ( ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( y G A ) = U ) /\ ( A G y ) = U ) -> ( A G U ) = ( U G A ) ) | 
						
							| 11 | 10 | anasss |  |-  ( ( ( ( G e. GrpOp /\ A e. X ) /\ y e. X ) /\ ( ( y G A ) = U /\ ( A G y ) = U ) ) -> ( A G U ) = ( U G A ) ) | 
						
							| 12 | 11 | r19.29an |  |-  ( ( ( G e. GrpOp /\ A e. X ) /\ E. y e. X ( ( y G A ) = U /\ ( A G y ) = U ) ) -> ( A G U ) = ( U G A ) ) |