| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpsubid.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | grpsubid.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | grpsubid.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | grpsubadd0sub.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 6 | 1 4 5 3 | grpsubval | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) | 
						
							| 8 | 1 3 5 2 | grpinvval2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑌  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  =  (  0   −  𝑌 ) ) | 
						
							| 9 | 8 | 3adant2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑌 )  =  (  0   −  𝑌 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  +  ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) )  =  ( 𝑋  +  (  0   −  𝑌 ) ) ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  −  𝑌 )  =  ( 𝑋  +  (  0   −  𝑌 ) ) ) |