| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gropd.g |
⊢ ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) ) |
| 2 |
|
gropd.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) |
| 3 |
|
gropd.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
| 4 |
|
grstructd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) |
| 5 |
|
grstructd.f |
⊢ ( 𝜑 → Fun ( 𝑆 ∖ { ∅ } ) ) |
| 6 |
|
grstructd.d |
⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝑆 ) ) |
| 7 |
|
grstructd.b |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = 𝑉 ) |
| 8 |
|
grstructd.e |
⊢ ( 𝜑 → ( .ef ‘ 𝑆 ) = 𝐸 ) |
| 9 |
|
funvtxdmge2val |
⊢ ( ( Fun ( 𝑆 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝑆 ) ) → ( Vtx ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
| 10 |
5 6 9
|
syl2anc |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
| 11 |
10 7
|
eqtrd |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 12 |
|
funiedgdmge2val |
⊢ ( ( Fun ( 𝑆 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝑆 ) ) → ( iEdg ‘ 𝑆 ) = ( .ef ‘ 𝑆 ) ) |
| 13 |
5 6 12
|
syl2anc |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( .ef ‘ 𝑆 ) ) |
| 14 |
13 8
|
eqtrd |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = 𝐸 ) |
| 15 |
11 14
|
jca |
⊢ ( 𝜑 → ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑔 𝑆 |
| 17 |
|
nfv |
⊢ Ⅎ 𝑔 ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) |
| 18 |
|
nfsbc1v |
⊢ Ⅎ 𝑔 [ 𝑆 / 𝑔 ] 𝜓 |
| 19 |
17 18
|
nfim |
⊢ Ⅎ 𝑔 ( ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) → [ 𝑆 / 𝑔 ] 𝜓 ) |
| 20 |
|
fveqeq2 |
⊢ ( 𝑔 = 𝑆 → ( ( Vtx ‘ 𝑔 ) = 𝑉 ↔ ( Vtx ‘ 𝑆 ) = 𝑉 ) ) |
| 21 |
|
fveqeq2 |
⊢ ( 𝑔 = 𝑆 → ( ( iEdg ‘ 𝑔 ) = 𝐸 ↔ ( iEdg ‘ 𝑆 ) = 𝐸 ) ) |
| 22 |
20 21
|
anbi12d |
⊢ ( 𝑔 = 𝑆 → ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) ↔ ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) ) ) |
| 23 |
|
sbceq1a |
⊢ ( 𝑔 = 𝑆 → ( 𝜓 ↔ [ 𝑆 / 𝑔 ] 𝜓 ) ) |
| 24 |
22 23
|
imbi12d |
⊢ ( 𝑔 = 𝑆 → ( ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) ↔ ( ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) → [ 𝑆 / 𝑔 ] 𝜓 ) ) ) |
| 25 |
16 19 24
|
spcgf |
⊢ ( 𝑆 ∈ 𝑋 → ( ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝜓 ) → ( ( ( Vtx ‘ 𝑆 ) = 𝑉 ∧ ( iEdg ‘ 𝑆 ) = 𝐸 ) → [ 𝑆 / 𝑔 ] 𝜓 ) ) ) |
| 26 |
4 1 15 25
|
syl3c |
⊢ ( 𝜑 → [ 𝑆 / 𝑔 ] 𝜓 ) |