| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumccatsymgsn.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐴 ) | 
						
							| 2 |  | gsumccatsymgsn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 | 1 | symggrp | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  Grp ) | 
						
							| 4 | 3 | grpmndd | ⊢ ( 𝐴  ∈  𝑉  →  𝐺  ∈  Mnd ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 6 | 2 5 | gsumccatsn | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑊  ∈  Word  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝐺  Σg  ( 𝑊  ++  〈“ 𝑍 ”〉 ) )  =  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) ) | 
						
							| 7 | 4 6 | syl3an1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑊  ∈  Word  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝐺  Σg  ( 𝑊  ++  〈“ 𝑍 ”〉 ) )  =  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) ) | 
						
							| 8 | 4 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑊  ∈  Word  𝐵  ∧  𝑍  ∈  𝐵 )  →  𝐺  ∈  Mnd ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑊  ∈  Word  𝐵  ∧  𝑍  ∈  𝐵 )  →  𝑊  ∈  Word  𝐵 ) | 
						
							| 10 | 2 | gsumwcl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑊  ∈  Word  𝐵 )  →  ( 𝐺  Σg  𝑊 )  ∈  𝐵 ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑊  ∈  Word  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝐺  Σg  𝑊 )  ∈  𝐵 ) | 
						
							| 12 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑊  ∈  Word  𝐵  ∧  𝑍  ∈  𝐵 )  →  𝑍  ∈  𝐵 ) | 
						
							| 13 | 1 2 5 | symgov | ⊢ ( ( ( 𝐺  Σg  𝑊 )  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) 𝑍 )  =  ( ( 𝐺  Σg  𝑊 )  ∘  𝑍 ) ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑊  ∈  Word  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝐺  Σg  𝑊 ) ( +g ‘ 𝐺 ) 𝑍 )  =  ( ( 𝐺  Σg  𝑊 )  ∘  𝑍 ) ) | 
						
							| 15 | 7 14 | eqtrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑊  ∈  Word  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( 𝐺  Σg  ( 𝑊  ++  〈“ 𝑍 ”〉 ) )  =  ( ( 𝐺  Σg  𝑊 )  ∘  𝑍 ) ) |