| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumccatsymgsn.g |  |-  G = ( SymGrp ` A ) | 
						
							| 2 |  | gsumccatsymgsn.b |  |-  B = ( Base ` G ) | 
						
							| 3 | 1 | symggrp |  |-  ( A e. V -> G e. Grp ) | 
						
							| 4 | 3 | grpmndd |  |-  ( A e. V -> G e. Mnd ) | 
						
							| 5 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 6 | 2 5 | gsumccatsn |  |-  ( ( G e. Mnd /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) ( +g ` G ) Z ) ) | 
						
							| 7 | 4 6 | syl3an1 |  |-  ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) ( +g ` G ) Z ) ) | 
						
							| 8 | 4 | 3ad2ant1 |  |-  ( ( A e. V /\ W e. Word B /\ Z e. B ) -> G e. Mnd ) | 
						
							| 9 |  | simp2 |  |-  ( ( A e. V /\ W e. Word B /\ Z e. B ) -> W e. Word B ) | 
						
							| 10 | 2 | gsumwcl |  |-  ( ( G e. Mnd /\ W e. Word B ) -> ( G gsum W ) e. B ) | 
						
							| 11 | 8 9 10 | syl2anc |  |-  ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( G gsum W ) e. B ) | 
						
							| 12 |  | simp3 |  |-  ( ( A e. V /\ W e. Word B /\ Z e. B ) -> Z e. B ) | 
						
							| 13 | 1 2 5 | symgov |  |-  ( ( ( G gsum W ) e. B /\ Z e. B ) -> ( ( G gsum W ) ( +g ` G ) Z ) = ( ( G gsum W ) o. Z ) ) | 
						
							| 14 | 11 12 13 | syl2anc |  |-  ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( ( G gsum W ) ( +g ` G ) Z ) = ( ( G gsum W ) o. Z ) ) | 
						
							| 15 | 7 14 | eqtrd |  |-  ( ( A e. V /\ W e. Word B /\ Z e. B ) -> ( G gsum ( W ++ <" Z "> ) ) = ( ( G gsum W ) o. Z ) ) |