Metamath Proof Explorer


Theorem h1dei

Description: Membership in 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis h1deot.1 𝐵 ∈ ℋ
Assertion h1dei ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 h1deot.1 𝐵 ∈ ℋ
2 snssi ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ )
3 occl ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ C )
4 1 2 3 mp2b ( ⊥ ‘ { 𝐵 } ) ∈ C
5 4 chssii ( ⊥ ‘ { 𝐵 } ) ⊆ ℋ
6 ocel ( ( ⊥ ‘ { 𝐵 } ) ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ) )
7 5 6 ax-mp ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) )
8 1 h1deoi ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑥 ·ih 𝐵 ) = 0 ) )
9 orthcom ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝑥 ) = 0 ) )
10 1 9 mpan2 ( 𝑥 ∈ ℋ → ( ( 𝑥 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝑥 ) = 0 ) )
11 10 pm5.32i ( ( 𝑥 ∈ ℋ ∧ ( 𝑥 ·ih 𝐵 ) = 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) )
12 8 11 bitri ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) )
13 12 imbi1i ( ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) → ( 𝐴 ·ih 𝑥 ) = 0 ) )
14 impexp ( ( ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ ℋ → ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) )
15 13 14 bitri ( ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ ℋ → ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) )
16 15 ralbii2 ( ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) )
17 16 anbi2i ( ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) )
18 7 17 bitri ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) )