| Step |
Hyp |
Ref |
Expression |
| 1 |
|
h1deot.1 |
⊢ 𝐵 ∈ ℋ |
| 2 |
|
snssi |
⊢ ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ ) |
| 3 |
|
occl |
⊢ ( { 𝐵 } ⊆ ℋ → ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ ) |
| 4 |
1 2 3
|
mp2b |
⊢ ( ⊥ ‘ { 𝐵 } ) ∈ Cℋ |
| 5 |
4
|
chssii |
⊢ ( ⊥ ‘ { 𝐵 } ) ⊆ ℋ |
| 6 |
|
ocel |
⊢ ( ( ⊥ ‘ { 𝐵 } ) ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 8 |
1
|
h1deoi |
⊢ ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑥 ·ih 𝐵 ) = 0 ) ) |
| 9 |
|
orthcom |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑥 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
| 10 |
1 9
|
mpan2 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑥 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
| 11 |
10
|
pm5.32i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑥 ·ih 𝐵 ) = 0 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
| 12 |
8 11
|
bitri |
⊢ ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) ) |
| 13 |
12
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 14 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ ( 𝐵 ·ih 𝑥 ) = 0 ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ ℋ → ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| 15 |
13 14
|
bitri |
⊢ ( ( 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) → ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝑥 ∈ ℋ → ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| 16 |
15
|
ralbii2 |
⊢ ( ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) |
| 17 |
16
|
anbi2i |
⊢ ( ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ( ⊥ ‘ { 𝐵 } ) ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| 18 |
7 17
|
bitri |
⊢ ( 𝐴 ∈ ( ⊥ ‘ ( ⊥ ‘ { 𝐵 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( 𝐵 ·ih 𝑥 ) = 0 → ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |