Metamath Proof Explorer


Theorem h1deoi

Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (New usage is discouraged.)

Ref Expression
Hypothesis h1deot.1 𝐵 ∈ ℋ
Assertion h1deoi ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 h1deot.1 𝐵 ∈ ℋ
2 snssi ( 𝐵 ∈ ℋ → { 𝐵 } ⊆ ℋ )
3 ocel ( { 𝐵 } ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) ) )
4 1 2 3 mp2b ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) )
5 1 elexi 𝐵 ∈ V
6 oveq2 ( 𝑥 = 𝐵 → ( 𝐴 ·ih 𝑥 ) = ( 𝐴 ·ih 𝐵 ) )
7 6 eqeq1d ( 𝑥 = 𝐵 → ( ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) )
8 5 7 ralsn ( ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ↔ ( 𝐴 ·ih 𝐵 ) = 0 )
9 8 anbi2i ( ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ { 𝐵 } ( 𝐴 ·ih 𝑥 ) = 0 ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) )
10 4 9 bitri ( 𝐴 ∈ ( ⊥ ‘ { 𝐵 } ) ↔ ( 𝐴 ∈ ℋ ∧ ( 𝐴 ·ih 𝐵 ) = 0 ) )