| Step | Hyp | Ref | Expression | 
						
							| 1 |  | h1deot.1 | ⊢ 𝐵  ∈   ℋ | 
						
							| 2 |  | snssi | ⊢ ( 𝐵  ∈   ℋ  →  { 𝐵 }  ⊆   ℋ ) | 
						
							| 3 |  | ocel | ⊢ ( { 𝐵 }  ⊆   ℋ  →  ( 𝐴  ∈  ( ⊥ ‘ { 𝐵 } )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  { 𝐵 } ( 𝐴  ·ih  𝑥 )  =  0 ) ) ) | 
						
							| 4 | 1 2 3 | mp2b | ⊢ ( 𝐴  ∈  ( ⊥ ‘ { 𝐵 } )  ↔  ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  { 𝐵 } ( 𝐴  ·ih  𝑥 )  =  0 ) ) | 
						
							| 5 | 1 | elexi | ⊢ 𝐵  ∈  V | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ·ih  𝑥 )  =  ( 𝐴  ·ih  𝐵 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ·ih  𝑥 )  =  0  ↔  ( 𝐴  ·ih  𝐵 )  =  0 ) ) | 
						
							| 8 | 5 7 | ralsn | ⊢ ( ∀ 𝑥  ∈  { 𝐵 } ( 𝐴  ·ih  𝑥 )  =  0  ↔  ( 𝐴  ·ih  𝐵 )  =  0 ) | 
						
							| 9 | 8 | anbi2i | ⊢ ( ( 𝐴  ∈   ℋ  ∧  ∀ 𝑥  ∈  { 𝐵 } ( 𝐴  ·ih  𝑥 )  =  0 )  ↔  ( 𝐴  ∈   ℋ  ∧  ( 𝐴  ·ih  𝐵 )  =  0 ) ) | 
						
							| 10 | 4 9 | bitri | ⊢ ( 𝐴  ∈  ( ⊥ ‘ { 𝐵 } )  ↔  ( 𝐴  ∈   ℋ  ∧  ( 𝐴  ·ih  𝐵 )  =  0 ) ) |