Metamath Proof Explorer


Theorem h1deoi

Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (New usage is discouraged.)

Ref Expression
Hypothesis h1deot.1 B
Assertion h1deoi ABAAihB=0

Proof

Step Hyp Ref Expression
1 h1deot.1 B
2 snssi BB
3 ocel BABAxBAihx=0
4 1 2 3 mp2b ABAxBAihx=0
5 1 elexi BV
6 oveq2 x=BAihx=AihB
7 6 eqeq1d x=BAihx=0AihB=0
8 5 7 ralsn xBAihx=0AihB=0
9 8 anbi2i AxBAihx=0AAihB=0
10 4 9 bitri ABAAihB=0