Metamath Proof Explorer


Theorem hausflimlem

Description: If A and B are both limits of the same filter, then all neighborhoods of A and B intersect. (Contributed by Mario Carneiro, 21-Sep-2015)

Ref Expression
Assertion hausflimlem ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → ( 𝑈𝑉 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 simp1l ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) )
2 eqid 𝐽 = 𝐽
3 2 flimfil ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝐽 ) )
4 1 3 syl ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝐹 ∈ ( Fil ‘ 𝐽 ) )
5 flimtop ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top )
6 1 5 syl ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝐽 ∈ Top )
7 simp2l ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝑈𝐽 )
8 simp3l ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝐴𝑈 )
9 opnneip ( ( 𝐽 ∈ Top ∧ 𝑈𝐽𝐴𝑈 ) → 𝑈 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )
10 6 7 8 9 syl3anc ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝑈 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) )
11 flimnei ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑈 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑈𝐹 )
12 1 10 11 syl2anc ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝑈𝐹 )
13 simp1r ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝐵 ∈ ( 𝐽 fLim 𝐹 ) )
14 simp2r ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝑉𝐽 )
15 simp3r ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝐵𝑉 )
16 opnneip ( ( 𝐽 ∈ Top ∧ 𝑉𝐽𝐵𝑉 ) → 𝑉 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐵 } ) )
17 6 14 15 16 syl3anc ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝑉 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐵 } ) )
18 flimnei ( ( 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑉 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐵 } ) ) → 𝑉𝐹 )
19 13 17 18 syl2anc ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → 𝑉𝐹 )
20 filinn0 ( ( 𝐹 ∈ ( Fil ‘ 𝐽 ) ∧ 𝑈𝐹𝑉𝐹 ) → ( 𝑈𝑉 ) ≠ ∅ )
21 4 12 19 20 syl3anc ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝐵 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑈𝐽𝑉𝐽 ) ∧ ( 𝐴𝑈𝐵𝑉 ) ) → ( 𝑈𝑉 ) ≠ ∅ )