| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hbntg | ⊢ ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜒 )  →  ( ¬  𝜒  →  ∀ 𝑥 ¬  𝜑 ) ) | 
						
							| 2 |  | pm2.21 | ⊢ ( ¬  𝜑  →  ( 𝜑  →  𝜃 ) ) | 
						
							| 3 | 2 | alimi | ⊢ ( ∀ 𝑥 ¬  𝜑  →  ∀ 𝑥 ( 𝜑  →  𝜃 ) ) | 
						
							| 4 | 1 3 | syl6 | ⊢ ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜒 )  →  ( ¬  𝜒  →  ∀ 𝑥 ( 𝜑  →  𝜃 ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜒 )  ∧  ( 𝜓  →  ∀ 𝑥 𝜃 ) )  →  ( ¬  𝜒  →  ∀ 𝑥 ( 𝜑  →  𝜃 ) ) ) | 
						
							| 6 |  | ala1 | ⊢ ( ∀ 𝑥 𝜃  →  ∀ 𝑥 ( 𝜑  →  𝜃 ) ) | 
						
							| 7 | 6 | imim2i | ⊢ ( ( 𝜓  →  ∀ 𝑥 𝜃 )  →  ( 𝜓  →  ∀ 𝑥 ( 𝜑  →  𝜃 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜒 )  ∧  ( 𝜓  →  ∀ 𝑥 𝜃 ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝜑  →  𝜃 ) ) ) | 
						
							| 9 | 5 8 | jad | ⊢ ( ( ∀ 𝑥 ( 𝜑  →  ∀ 𝑥 𝜒 )  ∧  ( 𝜓  →  ∀ 𝑥 𝜃 ) )  →  ( ( 𝜒  →  𝜓 )  →  ∀ 𝑥 ( 𝜑  →  𝜃 ) ) ) |