| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
heibor.3 |
⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } |
| 3 |
|
heibor.4 |
⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } |
| 4 |
|
heiborlem2.5 |
⊢ 𝐴 ∈ V |
| 5 |
|
heiborlem2.6 |
⊢ 𝐶 ∈ V |
| 6 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 𝐵 𝑛 ) = ( 𝐴 𝐵 𝑛 ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ↔ ( 𝐴 𝐵 𝑛 ) ∈ 𝐾 ) ) |
| 9 |
6 8
|
3anbi23d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) ↔ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐴 𝐵 𝑛 ) ∈ 𝐾 ) ) ) |
| 10 |
|
eleq1 |
⊢ ( 𝑛 = 𝐶 → ( 𝑛 ∈ ℕ0 ↔ 𝐶 ∈ ℕ0 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑛 = 𝐶 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 12 |
11
|
eleq2d |
⊢ ( 𝑛 = 𝐶 → ( 𝐴 ∈ ( 𝐹 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝐹 ‘ 𝐶 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑛 = 𝐶 → ( 𝐴 𝐵 𝑛 ) = ( 𝐴 𝐵 𝐶 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑛 = 𝐶 → ( ( 𝐴 𝐵 𝑛 ) ∈ 𝐾 ↔ ( 𝐴 𝐵 𝐶 ) ∈ 𝐾 ) ) |
| 15 |
10 12 14
|
3anbi123d |
⊢ ( 𝑛 = 𝐶 → ( ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐴 𝐵 𝑛 ) ∈ 𝐾 ) ↔ ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐴 𝐵 𝐶 ) ∈ 𝐾 ) ) ) |
| 16 |
4 5 9 15 3
|
brab |
⊢ ( 𝐴 𝐺 𝐶 ↔ ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐴 𝐵 𝐶 ) ∈ 𝐾 ) ) |