Description: Lemma for heibor . Substitutions for the set G . (Contributed by Jeff Madsen, 23-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | heibor.1 | |
|
heibor.3 | |
||
heibor.4 | |
||
heiborlem2.5 | |
||
heiborlem2.6 | |
||
Assertion | heiborlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | heibor.1 | |
|
2 | heibor.3 | |
|
3 | heibor.4 | |
|
4 | heiborlem2.5 | |
|
5 | heiborlem2.6 | |
|
6 | eleq1 | |
|
7 | oveq1 | |
|
8 | 7 | eleq1d | |
9 | 6 8 | 3anbi23d | |
10 | eleq1 | |
|
11 | fveq2 | |
|
12 | 11 | eleq2d | |
13 | oveq2 | |
|
14 | 13 | eleq1d | |
15 | 10 12 14 | 3anbi123d | |
16 | 4 5 9 15 3 | brab | |