Metamath Proof Explorer


Theorem heiborlem2

Description: Lemma for heibor . Substitutions for the set G . (Contributed by Jeff Madsen, 23-Jan-2014)

Ref Expression
Hypotheses heibor.1 J=MetOpenD
heibor.3 K=u|¬v𝒫UFinuv
heibor.4 G=yn|n0yFnyBnK
heiborlem2.5 AV
heiborlem2.6 CV
Assertion heiborlem2 AGCC0AFCABCK

Proof

Step Hyp Ref Expression
1 heibor.1 J=MetOpenD
2 heibor.3 K=u|¬v𝒫UFinuv
3 heibor.4 G=yn|n0yFnyBnK
4 heiborlem2.5 AV
5 heiborlem2.6 CV
6 eleq1 y=AyFnAFn
7 oveq1 y=AyBn=ABn
8 7 eleq1d y=AyBnKABnK
9 6 8 3anbi23d y=An0yFnyBnKn0AFnABnK
10 eleq1 n=Cn0C0
11 fveq2 n=CFn=FC
12 11 eleq2d n=CAFnAFC
13 oveq2 n=CABn=ABC
14 13 eleq1d n=CABnKABCK
15 10 12 14 3anbi123d n=Cn0AFnABnKC0AFCABCK
16 4 5 9 15 3 brab AGCC0AFCABCK