| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
1
|
heibor1 |
|
| 3 |
|
cmetmet |
|
| 4 |
3
|
adantr |
|
| 5 |
|
metxmet |
|
| 6 |
1
|
mopntop |
|
| 7 |
3 5 6
|
3syl |
|
| 8 |
7
|
adantr |
|
| 9 |
|
istotbnd |
|
| 10 |
9
|
simprbi |
|
| 11 |
|
2nn |
|
| 12 |
|
nnexpcl |
|
| 13 |
11 12
|
mpan |
|
| 14 |
13
|
nnrpd |
|
| 15 |
14
|
rpreccld |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
eqeq2d |
|
| 18 |
17
|
rexbidv |
|
| 19 |
18
|
ralbidv |
|
| 20 |
19
|
anbi2d |
|
| 21 |
20
|
rexbidv |
|
| 22 |
21
|
rspccva |
|
| 23 |
10 15 22
|
syl2an |
|
| 24 |
23
|
expcom |
|
| 25 |
24
|
adantl |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
eqeq2d |
|
| 28 |
27
|
ac6sfi |
|
| 29 |
28
|
adantrl |
|
| 30 |
29
|
adantl |
|
| 31 |
|
simp3l |
|
| 32 |
31
|
frnd |
|
| 33 |
1
|
mopnuni |
|
| 34 |
3 5 33
|
3syl |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
32 36
|
sseqtrd |
|
| 38 |
1
|
fvexi |
|
| 39 |
38
|
uniex |
|
| 40 |
39
|
elpw2 |
|
| 41 |
37 40
|
sylibr |
|
| 42 |
|
simp2l |
|
| 43 |
|
ffn |
|
| 44 |
|
dffn4 |
|
| 45 |
43 44
|
sylib |
|
| 46 |
|
fofi |
|
| 47 |
45 46
|
sylan2 |
|
| 48 |
42 31 47
|
syl2anc |
|
| 49 |
41 48
|
elind |
|
| 50 |
26
|
eleq2d |
|
| 51 |
50
|
rexrn |
|
| 52 |
|
eliun |
|
| 53 |
|
eliun |
|
| 54 |
51 52 53
|
3bitr4g |
|
| 55 |
54
|
eqrdv |
|
| 56 |
31 43 55
|
3syl |
|
| 57 |
|
simp3r |
|
| 58 |
|
uniiun |
|
| 59 |
|
iuneq2 |
|
| 60 |
58 59
|
eqtrid |
|
| 61 |
57 60
|
syl |
|
| 62 |
|
simp2r |
|
| 63 |
56 61 62
|
3eqtr2rd |
|
| 64 |
|
iuneq1 |
|
| 65 |
64
|
rspceeqv |
|
| 66 |
49 63 65
|
syl2anc |
|
| 67 |
66
|
3expia |
|
| 68 |
67
|
adantrrr |
|
| 69 |
68
|
exlimdv |
|
| 70 |
30 69
|
mpd |
|
| 71 |
70
|
rexlimdvaa |
|
| 72 |
25 71
|
syld |
|
| 73 |
72
|
ralrimdva |
|
| 74 |
39
|
pwex |
|
| 75 |
74
|
inex1 |
|
| 76 |
|
nn0ennn |
|
| 77 |
|
nnenom |
|
| 78 |
76 77
|
entri |
|
| 79 |
|
iuneq1 |
|
| 80 |
79
|
eqeq2d |
|
| 81 |
75 78 80
|
axcc4 |
|
| 82 |
73 81
|
syl6 |
|
| 83 |
|
elpwi |
|
| 84 |
|
eqid |
|
| 85 |
|
eqid |
|
| 86 |
|
eqid |
|
| 87 |
|
simpl |
|
| 88 |
34
|
pweqd |
|
| 89 |
88
|
ineq1d |
|
| 90 |
89
|
feq3d |
|
| 91 |
90
|
biimpar |
|
| 92 |
91
|
adantrr |
|
| 93 |
|
oveq1 |
|
| 94 |
93
|
cbviunv |
|
| 95 |
|
id |
|
| 96 |
|
inss1 |
|
| 97 |
96 88
|
sseqtrrid |
|
| 98 |
|
fss |
|
| 99 |
95 97 98
|
syl2anr |
|
| 100 |
99
|
ffvelcdmda |
|
| 101 |
100
|
elpwid |
|
| 102 |
101
|
sselda |
|
| 103 |
|
simplr |
|
| 104 |
|
oveq1 |
|
| 105 |
|
oveq2 |
|
| 106 |
105
|
oveq2d |
|
| 107 |
106
|
oveq2d |
|
| 108 |
|
ovex |
|
| 109 |
104 107 86 108
|
ovmpo |
|
| 110 |
102 103 109
|
syl2anc |
|
| 111 |
110
|
iuneq2dv |
|
| 112 |
94 111
|
eqtrid |
|
| 113 |
112
|
eqeq2d |
|
| 114 |
113
|
biimprd |
|
| 115 |
114
|
ralimdva |
|
| 116 |
115
|
impr |
|
| 117 |
|
fveq2 |
|
| 118 |
117
|
iuneq1d |
|
| 119 |
|
simpl |
|
| 120 |
119
|
oveq2d |
|
| 121 |
120
|
iuneq2dv |
|
| 122 |
118 121
|
eqtrd |
|
| 123 |
122
|
eqeq2d |
|
| 124 |
123
|
cbvralvw |
|
| 125 |
116 124
|
sylib |
|
| 126 |
1 84 85 86 87 92 125
|
heiborlem10 |
|
| 127 |
126
|
exp32 |
|
| 128 |
83 127
|
syl5 |
|
| 129 |
128
|
ralrimiv |
|
| 130 |
129
|
ex |
|
| 131 |
130
|
exlimdv |
|
| 132 |
82 131
|
syld |
|
| 133 |
132
|
imp |
|
| 134 |
|
eqid |
|
| 135 |
134
|
iscmp |
|
| 136 |
8 133 135
|
sylanbrc |
|
| 137 |
4 136
|
jca |
|
| 138 |
2 137
|
impbii |
|