| Step |
Hyp |
Ref |
Expression |
| 1 |
|
heibor.1 |
|
| 2 |
|
simpll |
|
| 3 |
|
simplr |
|
| 4 |
|
simprl |
|
| 5 |
|
simprr |
|
| 6 |
1 2 3 4 5
|
heibor1lem |
|
| 7 |
6
|
expr |
|
| 8 |
7
|
ralrimiva |
|
| 9 |
|
nnuz |
|
| 10 |
|
1zzd |
|
| 11 |
|
simpl |
|
| 12 |
9 1 10 11
|
iscmet3 |
|
| 13 |
8 12
|
mpbird |
|
| 14 |
|
simplr |
|
| 15 |
|
metxmet |
|
| 16 |
|
id |
|
| 17 |
|
rpxr |
|
| 18 |
1
|
blopn |
|
| 19 |
15 16 17 18
|
syl3an |
|
| 20 |
19
|
3com23 |
|
| 21 |
20
|
3expa |
|
| 22 |
|
eleq1a |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
rexlimdva |
|
| 25 |
24
|
adantlr |
|
| 26 |
25
|
abssdv |
|
| 27 |
15
|
ad2antrr |
|
| 28 |
1
|
mopnuni |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
blcntr |
|
| 31 |
15 30
|
syl3an1 |
|
| 32 |
31
|
3com23 |
|
| 33 |
32
|
3expa |
|
| 34 |
|
ovex |
|
| 35 |
34
|
elabrex |
|
| 36 |
35
|
adantl |
|
| 37 |
|
elunii |
|
| 38 |
33 36 37
|
syl2anc |
|
| 39 |
38
|
ralrimiva |
|
| 40 |
39
|
adantlr |
|
| 41 |
|
nfcv |
|
| 42 |
|
nfre1 |
|
| 43 |
42
|
nfab |
|
| 44 |
43
|
nfuni |
|
| 45 |
41 44
|
dfss3f |
|
| 46 |
40 45
|
sylibr |
|
| 47 |
29 46
|
eqsstrrd |
|
| 48 |
26
|
unissd |
|
| 49 |
47 48
|
eqssd |
|
| 50 |
|
eqid |
|
| 51 |
50
|
cmpcov |
|
| 52 |
14 26 49 51
|
syl3anc |
|
| 53 |
|
elin |
|
| 54 |
|
ancom |
|
| 55 |
53 54
|
bitri |
|
| 56 |
55
|
anbi1i |
|
| 57 |
|
anass |
|
| 58 |
56 57
|
bitri |
|
| 59 |
58
|
rexbii2 |
|
| 60 |
52 59
|
sylib |
|
| 61 |
|
ancom |
|
| 62 |
|
eqcom |
|
| 63 |
29
|
eqeq1d |
|
| 64 |
62 63
|
bitr2id |
|
| 65 |
64
|
anbi1d |
|
| 66 |
61 65
|
bitrid |
|
| 67 |
|
elpwi |
|
| 68 |
|
ssabral |
|
| 69 |
67 68
|
sylib |
|
| 70 |
69
|
anim2i |
|
| 71 |
66 70
|
biimtrdi |
|
| 72 |
71
|
reximdv |
|
| 73 |
60 72
|
mpd |
|
| 74 |
73
|
ralrimiva |
|
| 75 |
|
istotbnd |
|
| 76 |
11 74 75
|
sylanbrc |
|
| 77 |
13 76
|
jca |
|