Metamath Proof Explorer


Theorem istotbnd

Description: The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion istotbnd MTotBndXMMetXd+vFinv=XbvxXb=xballMd

Proof

Step Hyp Ref Expression
1 elfvex MTotBndXXV
2 elfvex MMetXXV
3 2 adantr MMetXd+vFinv=XbvxXb=xballMdXV
4 fveq2 y=XMety=MetX
5 eqeq2 y=Xv=yv=X
6 rexeq y=Xxyb=xballmdxXb=xballmd
7 6 ralbidv y=Xbvxyb=xballmdbvxXb=xballmd
8 5 7 anbi12d y=Xv=ybvxyb=xballmdv=XbvxXb=xballmd
9 8 rexbidv y=XvFinv=ybvxyb=xballmdvFinv=XbvxXb=xballmd
10 9 ralbidv y=Xd+vFinv=ybvxyb=xballmdd+vFinv=XbvxXb=xballmd
11 4 10 rabeqbidv y=XmMety|d+vFinv=ybvxyb=xballmd=mMetX|d+vFinv=XbvxXb=xballmd
12 df-totbnd TotBnd=yVmMety|d+vFinv=ybvxyb=xballmd
13 fvex MetXV
14 13 rabex mMetX|d+vFinv=XbvxXb=xballmdV
15 11 12 14 fvmpt XVTotBndX=mMetX|d+vFinv=XbvxXb=xballmd
16 15 eleq2d XVMTotBndXMmMetX|d+vFinv=XbvxXb=xballmd
17 fveq2 m=Mballm=ballM
18 17 oveqd m=Mxballmd=xballMd
19 18 eqeq2d m=Mb=xballmdb=xballMd
20 19 rexbidv m=MxXb=xballmdxXb=xballMd
21 20 ralbidv m=MbvxXb=xballmdbvxXb=xballMd
22 21 anbi2d m=Mv=XbvxXb=xballmdv=XbvxXb=xballMd
23 22 rexbidv m=MvFinv=XbvxXb=xballmdvFinv=XbvxXb=xballMd
24 23 ralbidv m=Md+vFinv=XbvxXb=xballmdd+vFinv=XbvxXb=xballMd
25 24 elrab MmMetX|d+vFinv=XbvxXb=xballmdMMetXd+vFinv=XbvxXb=xballMd
26 16 25 bitrdi XVMTotBndXMMetXd+vFinv=XbvxXb=xballMd
27 1 3 26 pm5.21nii MTotBndXMMetXd+vFinv=XbvxXb=xballMd