Metamath Proof Explorer


Definition df-totbnd

Description: Define the class of totally bounded metrics. A metric space is totally bounded iff it can be covered by a finite number of balls of any given radius. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-totbnd TotBnd=xVmMetx|d+vFinv=xbvyxb=yballmd

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctotbnd classTotBnd
1 vx setvarx
2 cvv classV
3 vm setvarm
4 cmet classMet
5 1 cv setvarx
6 5 4 cfv classMetx
7 vd setvard
8 crp class+
9 vv setvarv
10 cfn classFin
11 9 cv setvarv
12 11 cuni classv
13 12 5 wceq wffv=x
14 vb setvarb
15 vy setvary
16 14 cv setvarb
17 15 cv setvary
18 cbl classball
19 3 cv setvarm
20 19 18 cfv classballm
21 7 cv setvard
22 17 21 20 co classyballmd
23 16 22 wceq wffb=yballmd
24 23 15 5 wrex wffyxb=yballmd
25 24 14 11 wral wffbvyxb=yballmd
26 13 25 wa wffv=xbvyxb=yballmd
27 26 9 10 wrex wffvFinv=xbvyxb=yballmd
28 27 7 8 wral wffd+vFinv=xbvyxb=yballmd
29 28 3 6 crab classmMetx|d+vFinv=xbvyxb=yballmd
30 1 2 29 cmpt classxVmMetx|d+vFinv=xbvyxb=yballmd
31 0 30 wceq wffTotBnd=xVmMetx|d+vFinv=xbvyxb=yballmd