Description: Define the class of totally bounded metrics. A metric space is totally bounded iff it can be covered by a finite number of balls of any given radius. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | df-totbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctotbnd | |
|
1 | vx | |
|
2 | cvv | |
|
3 | vm | |
|
4 | cmet | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | vd | |
|
8 | crp | |
|
9 | vv | |
|
10 | cfn | |
|
11 | 9 | cv | |
12 | 11 | cuni | |
13 | 12 5 | wceq | |
14 | vb | |
|
15 | vy | |
|
16 | 14 | cv | |
17 | 15 | cv | |
18 | cbl | |
|
19 | 3 | cv | |
20 | 19 18 | cfv | |
21 | 7 | cv | |
22 | 17 21 20 | co | |
23 | 16 22 | wceq | |
24 | 23 15 5 | wrex | |
25 | 24 14 11 | wral | |
26 | 13 25 | wa | |
27 | 26 9 10 | wrex | |
28 | 27 7 8 | wral | |
29 | 28 3 6 | crab | |
30 | 1 2 29 | cmpt | |
31 | 0 30 | wceq | |