| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmet3.1 |
|
| 2 |
|
iscmet3.2 |
|
| 3 |
|
iscmet3.3 |
|
| 4 |
|
iscmet3.4 |
|
| 5 |
2
|
cmetcau |
|
| 6 |
5
|
a1d |
|
| 7 |
6
|
ralrimiva |
|
| 8 |
4
|
adantr |
|
| 9 |
|
simpr |
|
| 10 |
|
1rp |
|
| 11 |
|
rphalfcl |
|
| 12 |
10 11
|
ax-mp |
|
| 13 |
|
rpexpcl |
|
| 14 |
12 13
|
mpan |
|
| 15 |
|
cfili |
|
| 16 |
9 14 15
|
syl2an |
|
| 17 |
16
|
ralrimiva |
|
| 18 |
|
vex |
|
| 19 |
|
znnen |
|
| 20 |
|
nnenom |
|
| 21 |
19 20
|
entri |
|
| 22 |
|
raleq |
|
| 23 |
22
|
raleqbi1dv |
|
| 24 |
18 21 23
|
axcc4 |
|
| 25 |
17 24
|
syl |
|
| 26 |
3
|
ad2antrr |
|
| 27 |
1
|
uzenom |
|
| 28 |
|
endom |
|
| 29 |
26 27 28
|
3syl |
|
| 30 |
|
dfin5 |
|
| 31 |
|
fzn0 |
|
| 32 |
31
|
biimpri |
|
| 33 |
32 1
|
eleq2s |
|
| 34 |
|
metxmet |
|
| 35 |
4 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
|
simpl |
|
| 38 |
|
cfilfil |
|
| 39 |
36 37 38
|
syl2an |
|
| 40 |
|
simprr |
|
| 41 |
|
elfzelz |
|
| 42 |
|
ffvelcdm |
|
| 43 |
40 41 42
|
syl2an |
|
| 44 |
|
filelss |
|
| 45 |
39 43 44
|
syl2an2r |
|
| 46 |
45
|
ralrimiva |
|
| 47 |
|
r19.2z |
|
| 48 |
33 46 47
|
syl2anr |
|
| 49 |
|
iinss |
|
| 50 |
48 49
|
syl |
|
| 51 |
8
|
ad2antrr |
|
| 52 |
|
elfvdm |
|
| 53 |
|
fvi |
|
| 54 |
51 52 53
|
3syl |
|
| 55 |
50 54
|
sseqtrrd |
|
| 56 |
|
sseqin2 |
|
| 57 |
55 56
|
sylib |
|
| 58 |
30 57
|
eqtr3id |
|
| 59 |
39
|
adantr |
|
| 60 |
43
|
ralrimiva |
|
| 61 |
60
|
adantr |
|
| 62 |
33
|
adantl |
|
| 63 |
|
fzfid |
|
| 64 |
|
iinfi |
|
| 65 |
59 61 62 63 64
|
syl13anc |
|
| 66 |
|
filfi |
|
| 67 |
59 66
|
syl |
|
| 68 |
65 67
|
eleqtrd |
|
| 69 |
|
fileln0 |
|
| 70 |
39 68 69
|
syl2an2r |
|
| 71 |
58 70
|
eqnetrd |
|
| 72 |
|
rabn0 |
|
| 73 |
71 72
|
sylib |
|
| 74 |
73
|
ralrimiva |
|
| 75 |
74
|
adantrrr |
|
| 76 |
|
fvex |
|
| 77 |
|
eleq1 |
|
| 78 |
|
fvex |
|
| 79 |
|
eliin |
|
| 80 |
78 79
|
ax-mp |
|
| 81 |
77 80
|
bitrdi |
|
| 82 |
76 81
|
axcc4dom |
|
| 83 |
29 75 82
|
syl2anc |
|
| 84 |
|
df-ral |
|
| 85 |
|
19.29 |
|
| 86 |
84 85
|
sylanb |
|
| 87 |
3
|
ad2antrr |
|
| 88 |
4
|
ad2antrr |
|
| 89 |
|
simprrl |
|
| 90 |
|
feq3 |
|
| 91 |
88 52 53 90
|
4syl |
|
| 92 |
89 91
|
mpbid |
|
| 93 |
|
simplrr |
|
| 94 |
93
|
simprd |
|
| 95 |
|
fveq2 |
|
| 96 |
|
oveq2 |
|
| 97 |
96
|
breq2d |
|
| 98 |
95 97
|
raleqbidv |
|
| 99 |
95 98
|
raleqbidv |
|
| 100 |
99
|
cbvralvw |
|
| 101 |
94 100
|
sylib |
|
| 102 |
|
simprrr |
|
| 103 |
|
fveq2 |
|
| 104 |
103
|
eleq2d |
|
| 105 |
104
|
cbvralvw |
|
| 106 |
|
oveq2 |
|
| 107 |
|
fveq2 |
|
| 108 |
107
|
eleq1d |
|
| 109 |
106 108
|
raleqbidv |
|
| 110 |
105 109
|
bitrid |
|
| 111 |
110
|
cbvralvw |
|
| 112 |
102 111
|
sylib |
|
| 113 |
88 34
|
syl |
|
| 114 |
|
simplrl |
|
| 115 |
113 114 38
|
syl2anc |
|
| 116 |
93
|
simpld |
|
| 117 |
1 2 87 88 92 101 112
|
iscmet3lem1 |
|
| 118 |
|
simprl |
|
| 119 |
117 92 118
|
mp2d |
|
| 120 |
1 2 87 88 92 101 112 115 116 119
|
iscmet3lem2 |
|
| 121 |
120
|
ex |
|
| 122 |
121
|
exlimdv |
|
| 123 |
86 122
|
syl5 |
|
| 124 |
123
|
expdimp |
|
| 125 |
124
|
an32s |
|
| 126 |
83 125
|
mpd |
|
| 127 |
126
|
expr |
|
| 128 |
127
|
exlimdv |
|
| 129 |
25 128
|
mpd |
|
| 130 |
129
|
ralrimiva |
|
| 131 |
2
|
iscmet |
|
| 132 |
8 130 131
|
sylanbrc |
|
| 133 |
132
|
ex |
|
| 134 |
7 133
|
impbid2 |
|