Metamath Proof Explorer


Theorem iscmet3

Description: The property " D is a complete metric" expressed in terms of functions on NN (or any other upper integer set). Thus, we only have to look at functions on NN , and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006) (Revised by Mario Carneiro, 5-May-2014)

Ref Expression
Hypotheses iscmet3.1 Z=M
iscmet3.2 J=MetOpenD
iscmet3.3 φM
iscmet3.4 φDMetX
Assertion iscmet3 φDCMetXfCauDf:ZXfdomtJ

Proof

Step Hyp Ref Expression
1 iscmet3.1 Z=M
2 iscmet3.2 J=MetOpenD
3 iscmet3.3 φM
4 iscmet3.4 φDMetX
5 2 cmetcau DCMetXfCauDfdomtJ
6 5 a1d DCMetXfCauDf:ZXfdomtJ
7 6 ralrimiva DCMetXfCauDf:ZXfdomtJ
8 4 adantr φfCauDf:ZXfdomtJDMetX
9 simpr φfCauDf:ZXfdomtJgCauFilDgCauFilD
10 1rp 1+
11 rphalfcl 1+12+
12 10 11 ax-mp 12+
13 rpexpcl 12+k12k+
14 12 13 mpan k12k+
15 cfili gCauFilD12k+tgutvtuDv<12k
16 9 14 15 syl2an φfCauDf:ZXfdomtJgCauFilDktgutvtuDv<12k
17 16 ralrimiva φfCauDf:ZXfdomtJgCauFilDktgutvtuDv<12k
18 vex gV
19 znnen
20 nnenom ω
21 19 20 entri ω
22 raleq t=skvtuDv<12kvskuDv<12k
23 22 raleqbi1dv t=skutvtuDv<12kuskvskuDv<12k
24 18 21 23 axcc4 ktgutvtuDv<12kss:gkuskvskuDv<12k
25 17 24 syl φfCauDf:ZXfdomtJgCauFilDss:gkuskvskuDv<12k
26 3 ad2antrr φfCauDf:ZXfdomtJgCauFilDs:gkuskvskuDv<12kM
27 1 uzenom MZω
28 endom ZωZω
29 26 27 28 3syl φfCauDf:ZXfdomtJgCauFilDs:gkuskvskuDv<12kZω
30 dfin5 IXn=Mksn=xIX|xn=Mksn
31 fzn0 MkkM
32 31 biimpri kMMk
33 32 1 eleq2s kZMk
34 metxmet DMetXD∞MetX
35 4 34 syl φD∞MetX
36 35 adantr φfCauDf:ZXfdomtJD∞MetX
37 simpl gCauFilDs:ggCauFilD
38 cfilfil D∞MetXgCauFilDgFilX
39 36 37 38 syl2an φfCauDf:ZXfdomtJgCauFilDs:ggFilX
40 simprr φfCauDf:ZXfdomtJgCauFilDs:gs:g
41 elfzelz nMkn
42 ffvelcdm s:gnsng
43 40 41 42 syl2an φfCauDf:ZXfdomtJgCauFilDs:gnMksng
44 filelss gFilXsngsnX
45 39 43 44 syl2an2r φfCauDf:ZXfdomtJgCauFilDs:gnMksnX
46 45 ralrimiva φfCauDf:ZXfdomtJgCauFilDs:gnMksnX
47 r19.2z MknMksnXnMksnX
48 33 46 47 syl2anr φfCauDf:ZXfdomtJgCauFilDs:gkZnMksnX
49 iinss nMksnXn=MksnX
50 48 49 syl φfCauDf:ZXfdomtJgCauFilDs:gkZn=MksnX
51 8 ad2antrr φfCauDf:ZXfdomtJgCauFilDs:gkZDMetX
52 elfvdm DMetXXdomMet
53 fvi XdomMetIX=X
54 51 52 53 3syl φfCauDf:ZXfdomtJgCauFilDs:gkZIX=X
55 50 54 sseqtrrd φfCauDf:ZXfdomtJgCauFilDs:gkZn=MksnIX
56 sseqin2 n=MksnIXIXn=Mksn=n=Mksn
57 55 56 sylib φfCauDf:ZXfdomtJgCauFilDs:gkZIXn=Mksn=n=Mksn
58 30 57 eqtr3id φfCauDf:ZXfdomtJgCauFilDs:gkZxIX|xn=Mksn=n=Mksn
59 39 adantr φfCauDf:ZXfdomtJgCauFilDs:gkZgFilX
60 43 ralrimiva φfCauDf:ZXfdomtJgCauFilDs:gnMksng
61 60 adantr φfCauDf:ZXfdomtJgCauFilDs:gkZnMksng
62 33 adantl φfCauDf:ZXfdomtJgCauFilDs:gkZMk
63 fzfid φfCauDf:ZXfdomtJgCauFilDs:gkZMkFin
64 iinfi gFilXnMksngMkMkFinn=Mksnfig
65 59 61 62 63 64 syl13anc φfCauDf:ZXfdomtJgCauFilDs:gkZn=Mksnfig
66 filfi gFilXfig=g
67 59 66 syl φfCauDf:ZXfdomtJgCauFilDs:gkZfig=g
68 65 67 eleqtrd φfCauDf:ZXfdomtJgCauFilDs:gkZn=Mksng
69 fileln0 gFilXn=Mksngn=Mksn
70 39 68 69 syl2an2r φfCauDf:ZXfdomtJgCauFilDs:gkZn=Mksn
71 58 70 eqnetrd φfCauDf:ZXfdomtJgCauFilDs:gkZxIX|xn=Mksn
72 rabn0 xIX|xn=MksnxIXxn=Mksn
73 71 72 sylib φfCauDf:ZXfdomtJgCauFilDs:gkZxIXxn=Mksn
74 73 ralrimiva φfCauDf:ZXfdomtJgCauFilDs:gkZxIXxn=Mksn
75 74 adantrrr φfCauDf:ZXfdomtJgCauFilDs:gkuskvskuDv<12kkZxIXxn=Mksn
76 fvex IXV
77 eleq1 x=fkxn=Mksnfkn=Mksn
78 fvex fkV
79 eliin fkVfkn=MksnnMkfksn
80 78 79 ax-mp fkn=MksnnMkfksn
81 77 80 bitrdi x=fkxn=MksnnMkfksn
82 76 81 axcc4dom ZωkZxIXxn=Mksnff:ZIXkZnMkfksn
83 29 75 82 syl2anc φfCauDf:ZXfdomtJgCauFilDs:gkuskvskuDv<12kff:ZIXkZnMkfksn
84 df-ral fCauDf:ZXfdomtJffCauDf:ZXfdomtJ
85 19.29 ffCauDf:ZXfdomtJff:ZIXkZnMkfksnffCauDf:ZXfdomtJf:ZIXkZnMkfksn
86 84 85 sylanb fCauDf:ZXfdomtJff:ZIXkZnMkfksnffCauDf:ZXfdomtJf:ZIXkZnMkfksn
87 3 ad2antrr φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnM
88 4 ad2antrr φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnDMetX
89 simprrl φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnf:ZIX
90 feq3 IX=Xf:ZIXf:ZX
91 88 52 53 90 4syl φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnf:ZIXf:ZX
92 89 91 mpbid φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnf:ZX
93 simplrr φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksns:gkuskvskuDv<12k
94 93 simprd φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnkuskvskuDv<12k
95 fveq2 k=isk=si
96 oveq2 k=i12k=12i
97 96 breq2d k=iuDv<12kuDv<12i
98 95 97 raleqbidv k=ivskuDv<12kvsiuDv<12i
99 95 98 raleqbidv k=iuskvskuDv<12kusivsiuDv<12i
100 99 cbvralvw kuskvskuDv<12kiusivsiuDv<12i
101 94 100 sylib φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksniusivsiuDv<12i
102 simprrr φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnkZnMkfksn
103 fveq2 n=jsn=sj
104 103 eleq2d n=jfksnfksj
105 104 cbvralvw nMkfksnjMkfksj
106 oveq2 k=iMk=Mi
107 fveq2 k=ifk=fi
108 107 eleq1d k=ifksjfisj
109 106 108 raleqbidv k=ijMkfksjjMifisj
110 105 109 bitrid k=inMkfksnjMifisj
111 110 cbvralvw kZnMkfksniZjMifisj
112 102 111 sylib φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksniZjMifisj
113 88 34 syl φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnD∞MetX
114 simplrl φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksngCauFilD
115 113 114 38 syl2anc φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksngFilX
116 93 simpld φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksns:g
117 1 2 87 88 92 101 112 iscmet3lem1 φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnfCauD
118 simprl φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnfCauDf:ZXfdomtJ
119 117 92 118 mp2d φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnfdomtJ
120 1 2 87 88 92 101 112 115 116 119 iscmet3lem2 φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnJfLimg
121 120 ex φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJf:ZIXkZnMkfksnJfLimg
122 121 exlimdv φgCauFilDs:gkuskvskuDv<12kffCauDf:ZXfdomtJf:ZIXkZnMkfksnJfLimg
123 86 122 syl5 φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJff:ZIXkZnMkfksnJfLimg
124 123 expdimp φgCauFilDs:gkuskvskuDv<12kfCauDf:ZXfdomtJff:ZIXkZnMkfksnJfLimg
125 124 an32s φfCauDf:ZXfdomtJgCauFilDs:gkuskvskuDv<12kff:ZIXkZnMkfksnJfLimg
126 83 125 mpd φfCauDf:ZXfdomtJgCauFilDs:gkuskvskuDv<12kJfLimg
127 126 expr φfCauDf:ZXfdomtJgCauFilDs:gkuskvskuDv<12kJfLimg
128 127 exlimdv φfCauDf:ZXfdomtJgCauFilDss:gkuskvskuDv<12kJfLimg
129 25 128 mpd φfCauDf:ZXfdomtJgCauFilDJfLimg
130 129 ralrimiva φfCauDf:ZXfdomtJgCauFilDJfLimg
131 2 iscmet DCMetXDMetXgCauFilDJfLimg
132 8 130 131 sylanbrc φfCauDf:ZXfdomtJDCMetX
133 132 ex φfCauDf:ZXfdomtJDCMetX
134 7 133 impbid2 φDCMetXfCauDf:ZXfdomtJ