| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet3.1 |  | 
						
							| 2 |  | iscmet3.2 |  | 
						
							| 3 |  | iscmet3.3 |  | 
						
							| 4 |  | iscmet3.4 |  | 
						
							| 5 | 2 | cmetcau |  | 
						
							| 6 | 5 | a1d |  | 
						
							| 7 | 6 | ralrimiva |  | 
						
							| 8 | 4 | adantr |  | 
						
							| 9 |  | simpr |  | 
						
							| 10 |  | 1rp |  | 
						
							| 11 |  | rphalfcl |  | 
						
							| 12 | 10 11 | ax-mp |  | 
						
							| 13 |  | rpexpcl |  | 
						
							| 14 | 12 13 | mpan |  | 
						
							| 15 |  | cfili |  | 
						
							| 16 | 9 14 15 | syl2an |  | 
						
							| 17 | 16 | ralrimiva |  | 
						
							| 18 |  | vex |  | 
						
							| 19 |  | znnen |  | 
						
							| 20 |  | nnenom |  | 
						
							| 21 | 19 20 | entri |  | 
						
							| 22 |  | raleq |  | 
						
							| 23 | 22 | raleqbi1dv |  | 
						
							| 24 | 18 21 23 | axcc4 |  | 
						
							| 25 | 17 24 | syl |  | 
						
							| 26 | 3 | ad2antrr |  | 
						
							| 27 | 1 | uzenom |  | 
						
							| 28 |  | endom |  | 
						
							| 29 | 26 27 28 | 3syl |  | 
						
							| 30 |  | dfin5 |  | 
						
							| 31 |  | fzn0 |  | 
						
							| 32 | 31 | biimpri |  | 
						
							| 33 | 32 1 | eleq2s |  | 
						
							| 34 |  | metxmet |  | 
						
							| 35 | 4 34 | syl |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | simpl |  | 
						
							| 38 |  | cfilfil |  | 
						
							| 39 | 36 37 38 | syl2an |  | 
						
							| 40 |  | simprr |  | 
						
							| 41 |  | elfzelz |  | 
						
							| 42 |  | ffvelcdm |  | 
						
							| 43 | 40 41 42 | syl2an |  | 
						
							| 44 |  | filelss |  | 
						
							| 45 | 39 43 44 | syl2an2r |  | 
						
							| 46 | 45 | ralrimiva |  | 
						
							| 47 |  | r19.2z |  | 
						
							| 48 | 33 46 47 | syl2anr |  | 
						
							| 49 |  | iinss |  | 
						
							| 50 | 48 49 | syl |  | 
						
							| 51 | 8 | ad2antrr |  | 
						
							| 52 |  | elfvdm |  | 
						
							| 53 |  | fvi |  | 
						
							| 54 | 51 52 53 | 3syl |  | 
						
							| 55 | 50 54 | sseqtrrd |  | 
						
							| 56 |  | sseqin2 |  | 
						
							| 57 | 55 56 | sylib |  | 
						
							| 58 | 30 57 | eqtr3id |  | 
						
							| 59 | 39 | adantr |  | 
						
							| 60 | 43 | ralrimiva |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 | 33 | adantl |  | 
						
							| 63 |  | fzfid |  | 
						
							| 64 |  | iinfi |  | 
						
							| 65 | 59 61 62 63 64 | syl13anc |  | 
						
							| 66 |  | filfi |  | 
						
							| 67 | 59 66 | syl |  | 
						
							| 68 | 65 67 | eleqtrd |  | 
						
							| 69 |  | fileln0 |  | 
						
							| 70 | 39 68 69 | syl2an2r |  | 
						
							| 71 | 58 70 | eqnetrd |  | 
						
							| 72 |  | rabn0 |  | 
						
							| 73 | 71 72 | sylib |  | 
						
							| 74 | 73 | ralrimiva |  | 
						
							| 75 | 74 | adantrrr |  | 
						
							| 76 |  | fvex |  | 
						
							| 77 |  | eleq1 |  | 
						
							| 78 |  | fvex |  | 
						
							| 79 |  | eliin |  | 
						
							| 80 | 78 79 | ax-mp |  | 
						
							| 81 | 77 80 | bitrdi |  | 
						
							| 82 | 76 81 | axcc4dom |  | 
						
							| 83 | 29 75 82 | syl2anc |  | 
						
							| 84 |  | df-ral |  | 
						
							| 85 |  | 19.29 |  | 
						
							| 86 | 84 85 | sylanb |  | 
						
							| 87 | 3 | ad2antrr |  | 
						
							| 88 | 4 | ad2antrr |  | 
						
							| 89 |  | simprrl |  | 
						
							| 90 |  | feq3 |  | 
						
							| 91 | 88 52 53 90 | 4syl |  | 
						
							| 92 | 89 91 | mpbid |  | 
						
							| 93 |  | simplrr |  | 
						
							| 94 | 93 | simprd |  | 
						
							| 95 |  | fveq2 |  | 
						
							| 96 |  | oveq2 |  | 
						
							| 97 | 96 | breq2d |  | 
						
							| 98 | 95 97 | raleqbidv |  | 
						
							| 99 | 95 98 | raleqbidv |  | 
						
							| 100 | 99 | cbvralvw |  | 
						
							| 101 | 94 100 | sylib |  | 
						
							| 102 |  | simprrr |  | 
						
							| 103 |  | fveq2 |  | 
						
							| 104 | 103 | eleq2d |  | 
						
							| 105 | 104 | cbvralvw |  | 
						
							| 106 |  | oveq2 |  | 
						
							| 107 |  | fveq2 |  | 
						
							| 108 | 107 | eleq1d |  | 
						
							| 109 | 106 108 | raleqbidv |  | 
						
							| 110 | 105 109 | bitrid |  | 
						
							| 111 | 110 | cbvralvw |  | 
						
							| 112 | 102 111 | sylib |  | 
						
							| 113 | 88 34 | syl |  | 
						
							| 114 |  | simplrl |  | 
						
							| 115 | 113 114 38 | syl2anc |  | 
						
							| 116 | 93 | simpld |  | 
						
							| 117 | 1 2 87 88 92 101 112 | iscmet3lem1 |  | 
						
							| 118 |  | simprl |  | 
						
							| 119 | 117 92 118 | mp2d |  | 
						
							| 120 | 1 2 87 88 92 101 112 115 116 119 | iscmet3lem2 |  | 
						
							| 121 | 120 | ex |  | 
						
							| 122 | 121 | exlimdv |  | 
						
							| 123 | 86 122 | syl5 |  | 
						
							| 124 | 123 | expdimp |  | 
						
							| 125 | 124 | an32s |  | 
						
							| 126 | 83 125 | mpd |  | 
						
							| 127 | 126 | expr |  | 
						
							| 128 | 127 | exlimdv |  | 
						
							| 129 | 25 128 | mpd |  | 
						
							| 130 | 129 | ralrimiva |  | 
						
							| 131 | 2 | iscmet |  | 
						
							| 132 | 8 130 131 | sylanbrc |  | 
						
							| 133 | 132 | ex |  | 
						
							| 134 | 7 133 | impbid2 |  |