| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmet3.1 |
|
| 2 |
|
iscmet3.2 |
|
| 3 |
|
iscmet3.3 |
|
| 4 |
|
iscmet3.4 |
|
| 5 |
|
iscmet3.6 |
|
| 6 |
|
iscmet3.9 |
|
| 7 |
|
iscmet3.10 |
|
| 8 |
1
|
iscmet3lem3 |
|
| 9 |
3 8
|
sylan |
|
| 10 |
1
|
r19.2uz |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
eleq2d |
|
| 14 |
7
|
ad2antrr |
|
| 15 |
|
simpl |
|
| 16 |
15
|
adantl |
|
| 17 |
|
rsp |
|
| 18 |
14 16 17
|
sylc |
|
| 19 |
16 1
|
eleqtrdi |
|
| 20 |
|
eluzfz2 |
|
| 21 |
19 20
|
syl |
|
| 22 |
13 18 21
|
rspcdva |
|
| 23 |
12
|
eleq2d |
|
| 24 |
|
oveq2 |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
eleq1d |
|
| 27 |
24 26
|
raleqbidv |
|
| 28 |
1
|
uztrn2 |
|
| 29 |
28
|
adantl |
|
| 30 |
27 14 29
|
rspcdva |
|
| 31 |
|
simprr |
|
| 32 |
|
elfzuzb |
|
| 33 |
19 31 32
|
sylanbrc |
|
| 34 |
23 30 33
|
rspcdva |
|
| 35 |
6
|
ad2antrr |
|
| 36 |
|
eluzelz |
|
| 37 |
36 1
|
eleq2s |
|
| 38 |
37
|
ad2antrl |
|
| 39 |
|
rsp |
|
| 40 |
35 38 39
|
sylc |
|
| 41 |
|
oveq1 |
|
| 42 |
41
|
breq1d |
|
| 43 |
|
oveq2 |
|
| 44 |
43
|
breq1d |
|
| 45 |
42 44
|
rspc2va |
|
| 46 |
22 34 40 45
|
syl21anc |
|
| 47 |
4
|
ad2antrr |
|
| 48 |
5
|
adantr |
|
| 49 |
|
ffvelcdm |
|
| 50 |
48 15 49
|
syl2an |
|
| 51 |
|
ffvelcdm |
|
| 52 |
48 28 51
|
syl2an |
|
| 53 |
|
metcl |
|
| 54 |
47 50 52 53
|
syl3anc |
|
| 55 |
|
1rp |
|
| 56 |
|
rphalfcl |
|
| 57 |
55 56
|
ax-mp |
|
| 58 |
|
rpexpcl |
|
| 59 |
57 38 58
|
sylancr |
|
| 60 |
59
|
rpred |
|
| 61 |
|
rpre |
|
| 62 |
61
|
ad2antlr |
|
| 63 |
|
lttr |
|
| 64 |
54 60 62 63
|
syl3anc |
|
| 65 |
46 64
|
mpand |
|
| 66 |
65
|
anassrs |
|
| 67 |
66
|
ralrimdva |
|
| 68 |
67
|
reximdva |
|
| 69 |
11 68
|
mpd |
|
| 70 |
69
|
ralrimiva |
|
| 71 |
|
metxmet |
|
| 72 |
4 71
|
syl |
|
| 73 |
|
eqidd |
|
| 74 |
|
eqidd |
|
| 75 |
1 72 3 73 74 5
|
iscauf |
|
| 76 |
70 75
|
mpbird |
|