| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscau3.2 |  | 
						
							| 2 |  | iscau3.3 |  | 
						
							| 3 |  | iscau3.4 |  | 
						
							| 4 |  | iscau4.5 |  | 
						
							| 5 |  | iscau4.6 |  | 
						
							| 6 |  | iscauf.7 |  | 
						
							| 7 |  | elfvdm |  | 
						
							| 8 | 2 7 | syl |  | 
						
							| 9 |  | cnex |  | 
						
							| 10 | 8 9 | jctir |  | 
						
							| 11 |  | uzssz |  | 
						
							| 12 |  | zsscn |  | 
						
							| 13 | 11 12 | sstri |  | 
						
							| 14 | 1 13 | eqsstri |  | 
						
							| 15 | 6 14 | jctir |  | 
						
							| 16 |  | elpm2r |  | 
						
							| 17 | 10 15 16 | syl2anc |  | 
						
							| 18 | 17 | biantrurd |  | 
						
							| 19 | 2 | adantr |  | 
						
							| 20 | 5 | adantrr |  | 
						
							| 21 | 6 | adantr |  | 
						
							| 22 |  | simprl |  | 
						
							| 23 | 21 22 | ffvelcdmd |  | 
						
							| 24 | 20 23 | eqeltrrd |  | 
						
							| 25 | 1 | uztrn2 |  | 
						
							| 26 | 25 4 | sylan2 |  | 
						
							| 27 |  | ffvelcdm |  | 
						
							| 28 | 6 25 27 | syl2an |  | 
						
							| 29 | 26 28 | eqeltrrd |  | 
						
							| 30 |  | xmetsym |  | 
						
							| 31 | 19 24 29 30 | syl3anc |  | 
						
							| 32 | 31 | breq1d |  | 
						
							| 33 |  | fdm |  | 
						
							| 34 | 33 | eleq2d |  | 
						
							| 35 | 34 | biimpar |  | 
						
							| 36 | 6 25 35 | syl2an |  | 
						
							| 37 | 36 29 | jca |  | 
						
							| 38 | 37 | biantrurd |  | 
						
							| 39 |  | df-3an |  | 
						
							| 40 | 38 39 | bitr4di |  | 
						
							| 41 | 32 40 | bitrd |  | 
						
							| 42 | 41 | anassrs |  | 
						
							| 43 | 42 | ralbidva |  | 
						
							| 44 | 43 | rexbidva |  | 
						
							| 45 | 44 | ralbidv |  | 
						
							| 46 | 1 2 3 4 5 | iscau4 |  | 
						
							| 47 | 18 45 46 | 3bitr4rd |  |