Metamath Proof Explorer


Theorem iscauf

Description: Express the property " F is a Cauchy sequence of metric D " presupposing F is a function. (Contributed by NM, 24-Jul-2007) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypotheses iscau3.2 Z = M
iscau3.3 φ D ∞Met X
iscau3.4 φ M
iscau4.5 φ k Z F k = A
iscau4.6 φ j Z F j = B
iscauf.7 φ F : Z X
Assertion iscauf φ F Cau D x + j Z k j B D A < x

Proof

Step Hyp Ref Expression
1 iscau3.2 Z = M
2 iscau3.3 φ D ∞Met X
3 iscau3.4 φ M
4 iscau4.5 φ k Z F k = A
5 iscau4.6 φ j Z F j = B
6 iscauf.7 φ F : Z X
7 elfvdm D ∞Met X X dom ∞Met
8 2 7 syl φ X dom ∞Met
9 cnex V
10 8 9 jctir φ X dom ∞Met V
11 uzssz M
12 zsscn
13 11 12 sstri M
14 1 13 eqsstri Z
15 6 14 jctir φ F : Z X Z
16 elpm2r X dom ∞Met V F : Z X Z F X 𝑝𝑚
17 10 15 16 syl2anc φ F X 𝑝𝑚
18 17 biantrurd φ x + j Z k j k dom F A X A D B < x F X 𝑝𝑚 x + j Z k j k dom F A X A D B < x
19 2 adantr φ j Z k j D ∞Met X
20 5 adantrr φ j Z k j F j = B
21 6 adantr φ j Z k j F : Z X
22 simprl φ j Z k j j Z
23 21 22 ffvelrnd φ j Z k j F j X
24 20 23 eqeltrrd φ j Z k j B X
25 1 uztrn2 j Z k j k Z
26 25 4 sylan2 φ j Z k j F k = A
27 ffvelrn F : Z X k Z F k X
28 6 25 27 syl2an φ j Z k j F k X
29 26 28 eqeltrrd φ j Z k j A X
30 xmetsym D ∞Met X B X A X B D A = A D B
31 19 24 29 30 syl3anc φ j Z k j B D A = A D B
32 31 breq1d φ j Z k j B D A < x A D B < x
33 fdm F : Z X dom F = Z
34 33 eleq2d F : Z X k dom F k Z
35 34 biimpar F : Z X k Z k dom F
36 6 25 35 syl2an φ j Z k j k dom F
37 36 29 jca φ j Z k j k dom F A X
38 37 biantrurd φ j Z k j A D B < x k dom F A X A D B < x
39 df-3an k dom F A X A D B < x k dom F A X A D B < x
40 38 39 bitr4di φ j Z k j A D B < x k dom F A X A D B < x
41 32 40 bitrd φ j Z k j B D A < x k dom F A X A D B < x
42 41 anassrs φ j Z k j B D A < x k dom F A X A D B < x
43 42 ralbidva φ j Z k j B D A < x k j k dom F A X A D B < x
44 43 rexbidva φ j Z k j B D A < x j Z k j k dom F A X A D B < x
45 44 ralbidv φ x + j Z k j B D A < x x + j Z k j k dom F A X A D B < x
46 1 2 3 4 5 iscau4 φ F Cau D F X 𝑝𝑚 x + j Z k j k dom F A X A D B < x
47 18 45 46 3bitr4rd φ F Cau D x + j Z k j B D A < x