Metamath Proof Explorer


Theorem caun0

Description: A metric with a Cauchy sequence cannot be empty. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 24-Dec-2013)

Ref Expression
Assertion caun0 D ∞Met X F Cau D X

Proof

Step Hyp Ref Expression
1 1rp 1 +
2 1 ne0ii +
3 iscau2 D ∞Met X F Cau D F X 𝑝𝑚 x + j k j k dom F F k X F k D F j < x
4 3 simplbda D ∞Met X F Cau D x + j k j k dom F F k X F k D F j < x
5 r19.2z + x + j k j k dom F F k X F k D F j < x x + j k j k dom F F k X F k D F j < x
6 2 4 5 sylancr D ∞Met X F Cau D x + j k j k dom F F k X F k D F j < x
7 uzid j j j
8 ne0i j j j
9 r19.2z j k j k dom F F k X F k D F j < x k j k dom F F k X F k D F j < x
10 9 ex j k j k dom F F k X F k D F j < x k j k dom F F k X F k D F j < x
11 7 8 10 3syl j k j k dom F F k X F k D F j < x k j k dom F F k X F k D F j < x
12 ne0i F k X X
13 12 3ad2ant2 k dom F F k X F k D F j < x X
14 13 rexlimivw k j k dom F F k X F k D F j < x X
15 11 14 syl6 j k j k dom F F k X F k D F j < x X
16 15 rexlimiv j k j k dom F F k X F k D F j < x X
17 16 rexlimivw x + j k j k dom F F k X F k D F j < x X
18 6 17 syl D ∞Met X F Cau D X