| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscau3.2 |  | 
						
							| 2 |  | iscau3.3 |  | 
						
							| 3 |  | iscau3.4 |  | 
						
							| 4 |  | iscau4.5 |  | 
						
							| 5 |  | iscau4.6 |  | 
						
							| 6 | 1 2 3 | iscau3 |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 7 1 | eleqtrdi |  | 
						
							| 9 |  | eluzelz |  | 
						
							| 10 |  | uzid |  | 
						
							| 11 | 8 9 10 | 3syl |  | 
						
							| 12 |  | fveq2 |  | 
						
							| 13 |  | fveq2 |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 14 | breq1d |  | 
						
							| 16 | 12 15 | raleqbidv |  | 
						
							| 17 | 16 | rspcv |  | 
						
							| 18 | 11 17 | syl |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | fveq2 |  | 
						
							| 21 | 20 | oveq2d |  | 
						
							| 22 | 21 | breq1d |  | 
						
							| 23 | 22 | cbvralvw |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 24 | ralimi |  | 
						
							| 26 | 13 | eleq1d |  | 
						
							| 27 | 26 | rspcv |  | 
						
							| 28 | 11 25 27 | syl2im |  | 
						
							| 29 | 28 | imp |  | 
						
							| 30 |  | r19.26 |  | 
						
							| 31 | 2 | ad3antrrr |  | 
						
							| 32 |  | simplr |  | 
						
							| 33 |  | simprr |  | 
						
							| 34 |  | xmetsym |  | 
						
							| 35 | 31 32 33 34 | syl3anc |  | 
						
							| 36 | 35 | breq1d |  | 
						
							| 37 | 36 | biimpd |  | 
						
							| 38 | 37 | expimpd |  | 
						
							| 39 | 38 | ralimdv |  | 
						
							| 40 | 30 39 | biimtrrid |  | 
						
							| 41 | 40 | expd |  | 
						
							| 42 | 41 | impancom |  | 
						
							| 43 | 29 42 | mpd |  | 
						
							| 44 | 23 43 | biimtrid |  | 
						
							| 45 | 19 44 | syld |  | 
						
							| 46 | 45 | imdistanda |  | 
						
							| 47 |  | r19.26 |  | 
						
							| 48 |  | r19.26 |  | 
						
							| 49 | 46 47 48 | 3imtr4g |  | 
						
							| 50 |  | df-3an |  | 
						
							| 51 | 50 | ralbii |  | 
						
							| 52 |  | df-3an |  | 
						
							| 53 | 52 | ralbii |  | 
						
							| 54 | 49 51 53 | 3imtr4g |  | 
						
							| 55 | 54 | reximdva |  | 
						
							| 56 | 55 | ralimdv |  | 
						
							| 57 | 56 | anim2d |  | 
						
							| 58 | 6 57 | sylbid |  | 
						
							| 59 |  | uzssz |  | 
						
							| 60 | 1 59 | eqsstri |  | 
						
							| 61 |  | ssrexv |  | 
						
							| 62 | 60 61 | ax-mp |  | 
						
							| 63 | 62 | ralimi |  | 
						
							| 64 | 63 | anim2i |  | 
						
							| 65 |  | iscau2 |  | 
						
							| 66 | 64 65 | imbitrrid |  | 
						
							| 67 | 2 66 | syl |  | 
						
							| 68 | 58 67 | impbid |  | 
						
							| 69 |  | simpl |  | 
						
							| 70 | 1 | uztrn2 |  | 
						
							| 71 | 69 70 | jca |  | 
						
							| 72 | 4 | adantrl |  | 
						
							| 73 | 72 | eleq1d |  | 
						
							| 74 | 5 | adantrr |  | 
						
							| 75 | 72 74 | oveq12d |  | 
						
							| 76 | 75 | breq1d |  | 
						
							| 77 | 73 76 | 3anbi23d |  | 
						
							| 78 | 71 77 | sylan2 |  | 
						
							| 79 | 78 | anassrs |  | 
						
							| 80 | 79 | ralbidva |  | 
						
							| 81 | 80 | rexbidva |  | 
						
							| 82 | 81 | ralbidv |  | 
						
							| 83 | 82 | anbi2d |  | 
						
							| 84 | 68 83 | bitrd |  |