| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet3.1 |  | 
						
							| 2 |  | simpl |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 |  | eluzelz |  | 
						
							| 5 | 4 1 | eleq2s |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | ovex |  | 
						
							| 10 | 7 8 9 | fvmpt |  | 
						
							| 11 | 6 10 | syl |  | 
						
							| 12 |  | nn0uz |  | 
						
							| 13 | 12 | reseq2i |  | 
						
							| 14 |  | nn0ssz |  | 
						
							| 15 |  | resmpt |  | 
						
							| 16 | 14 15 | ax-mp |  | 
						
							| 17 | 13 16 | eqtr3i |  | 
						
							| 18 |  | halfcn |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 |  | halfre |  | 
						
							| 21 |  | halfge0 |  | 
						
							| 22 |  | absid |  | 
						
							| 23 | 20 21 22 | mp2an |  | 
						
							| 24 |  | halflt1 |  | 
						
							| 25 | 23 24 | eqbrtri |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 | 19 26 | expcnv |  | 
						
							| 28 | 17 27 | eqbrtrid |  | 
						
							| 29 |  | 0z |  | 
						
							| 30 |  | zex |  | 
						
							| 31 | 30 | mptex |  | 
						
							| 32 | 31 | a1i |  | 
						
							| 33 |  | climres |  | 
						
							| 34 | 29 32 33 | sylancr |  | 
						
							| 35 | 28 34 | mpbid |  | 
						
							| 36 | 1 2 3 11 35 | climi0 |  | 
						
							| 37 | 1 | uztrn2 |  | 
						
							| 38 |  | 1rp |  | 
						
							| 39 |  | rphalfcl |  | 
						
							| 40 | 38 39 | ax-mp |  | 
						
							| 41 |  | rpexpcl |  | 
						
							| 42 | 40 6 41 | sylancr |  | 
						
							| 43 |  | rpre |  | 
						
							| 44 |  | rpge0 |  | 
						
							| 45 | 43 44 | absidd |  | 
						
							| 46 | 42 45 | syl |  | 
						
							| 47 | 46 | breq1d |  | 
						
							| 48 | 37 47 | sylan2 |  | 
						
							| 49 | 48 | anassrs |  | 
						
							| 50 | 49 | ralbidva |  | 
						
							| 51 | 50 | rexbidva |  | 
						
							| 52 | 36 51 | mpbid |  |