| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmet3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 3 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → 𝑅 ∈ ℝ+ ) |
| 4 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
| 5 |
4 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ℤ ) |
| 7 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 1 / 2 ) ↑ 𝑛 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 8 |
|
eqid |
⊢ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) |
| 9 |
|
ovex |
⊢ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ V |
| 10 |
7 8 9
|
fvmpt |
⊢ ( 𝑘 ∈ ℤ → ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 11 |
6 10
|
syl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 12 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 13 |
12
|
reseq2i |
⊢ ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ℕ0 ) = ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) |
| 14 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
| 15 |
|
resmpt |
⊢ ( ℕ0 ⊆ ℤ → ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ℕ0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ℕ0 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) |
| 17 |
13 16
|
eqtr3i |
⊢ ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) |
| 18 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 19 |
18
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( 1 / 2 ) ∈ ℂ ) |
| 20 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 21 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
| 22 |
|
absid |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 23 |
20 21 22
|
mp2an |
⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
| 24 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 25 |
23 24
|
eqbrtri |
⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
| 26 |
25
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( abs ‘ ( 1 / 2 ) ) < 1 ) |
| 27 |
19 26
|
expcnv |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) |
| 28 |
17 27
|
eqbrtrid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) ⇝ 0 ) |
| 29 |
|
0z |
⊢ 0 ∈ ℤ |
| 30 |
|
zex |
⊢ ℤ ∈ V |
| 31 |
30
|
mptex |
⊢ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ∈ V |
| 32 |
31
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ∈ V ) |
| 33 |
|
climres |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ∈ V ) → ( ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) ) |
| 34 |
29 32 33
|
sylancr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( ( ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ↾ ( ℤ≥ ‘ 0 ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) ) |
| 35 |
28 34
|
mpbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( 𝑛 ∈ ℤ ↦ ( ( 1 / 2 ) ↑ 𝑛 ) ) ⇝ 0 ) |
| 36 |
1 2 3 11 35
|
climi0 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ) |
| 37 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 38 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 39 |
|
rphalfcl |
⊢ ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ ) |
| 40 |
38 39
|
ax-mp |
⊢ ( 1 / 2 ) ∈ ℝ+ |
| 41 |
|
rpexpcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 42 |
40 6 41
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ ) |
| 43 |
|
rpre |
⊢ ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 44 |
|
rpge0 |
⊢ ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ → 0 ≤ ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 45 |
43 44
|
absidd |
⊢ ( ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ → ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 46 |
42 45
|
syl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( ( 1 / 2 ) ↑ 𝑘 ) ) |
| 47 |
46
|
breq1d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 48 |
37 47
|
sylan2 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 49 |
48
|
anassrs |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 50 |
49
|
ralbidva |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 51 |
50
|
rexbidva |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 1 / 2 ) ↑ 𝑘 ) ) < 𝑅 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) ) |
| 52 |
36 51
|
mpbid |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑅 ) |