| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscmet3.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
simpl |
|- ( ( M e. ZZ /\ R e. RR+ ) -> M e. ZZ ) |
| 3 |
|
simpr |
|- ( ( M e. ZZ /\ R e. RR+ ) -> R e. RR+ ) |
| 4 |
|
eluzelz |
|- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
| 5 |
4 1
|
eleq2s |
|- ( k e. Z -> k e. ZZ ) |
| 6 |
5
|
adantl |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> k e. ZZ ) |
| 7 |
|
oveq2 |
|- ( n = k -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ k ) ) |
| 8 |
|
eqid |
|- ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |
| 9 |
|
ovex |
|- ( ( 1 / 2 ) ^ k ) e. _V |
| 10 |
7 8 9
|
fvmpt |
|- ( k e. ZZ -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 11 |
6 10
|
syl |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 12 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 13 |
12
|
reseq2i |
|- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) |
| 14 |
|
nn0ssz |
|- NN0 C_ ZZ |
| 15 |
|
resmpt |
|- ( NN0 C_ ZZ -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) |
| 16 |
14 15
|
ax-mp |
|- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
| 17 |
13 16
|
eqtr3i |
|- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
| 18 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 19 |
18
|
a1i |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( 1 / 2 ) e. CC ) |
| 20 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 21 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
| 22 |
|
absid |
|- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 23 |
20 21 22
|
mp2an |
|- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
| 24 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 25 |
23 24
|
eqbrtri |
|- ( abs ` ( 1 / 2 ) ) < 1 |
| 26 |
25
|
a1i |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( abs ` ( 1 / 2 ) ) < 1 ) |
| 27 |
19 26
|
expcnv |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) |
| 28 |
17 27
|
eqbrtrid |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 ) |
| 29 |
|
0z |
|- 0 e. ZZ |
| 30 |
|
zex |
|- ZZ e. _V |
| 31 |
30
|
mptex |
|- ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V |
| 32 |
31
|
a1i |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V ) |
| 33 |
|
climres |
|- ( ( 0 e. ZZ /\ ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V ) -> ( ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 <-> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) ) |
| 34 |
29 32 33
|
sylancr |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 <-> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) ) |
| 35 |
28 34
|
mpbid |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) |
| 36 |
1 2 3 11 35
|
climi0 |
|- ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R ) |
| 37 |
1
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 38 |
|
1rp |
|- 1 e. RR+ |
| 39 |
|
rphalfcl |
|- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
| 40 |
38 39
|
ax-mp |
|- ( 1 / 2 ) e. RR+ |
| 41 |
|
rpexpcl |
|- ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 42 |
40 6 41
|
sylancr |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 43 |
|
rpre |
|- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> ( ( 1 / 2 ) ^ k ) e. RR ) |
| 44 |
|
rpge0 |
|- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> 0 <_ ( ( 1 / 2 ) ^ k ) ) |
| 45 |
43 44
|
absidd |
|- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> ( abs ` ( ( 1 / 2 ) ^ k ) ) = ( ( 1 / 2 ) ^ k ) ) |
| 46 |
42 45
|
syl |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( 1 / 2 ) ^ k ) ) = ( ( 1 / 2 ) ^ k ) ) |
| 47 |
46
|
breq1d |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
| 48 |
37 47
|
sylan2 |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
| 49 |
48
|
anassrs |
|- ( ( ( ( M e. ZZ /\ R e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
| 50 |
49
|
ralbidva |
|- ( ( ( M e. ZZ /\ R e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) ) |
| 51 |
50
|
rexbidva |
|- ( ( M e. ZZ /\ R e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) ) |
| 52 |
36 51
|
mpbid |
|- ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) |