| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet3.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | simpl |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> M e. ZZ ) | 
						
							| 3 |  | simpr |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> R e. RR+ ) | 
						
							| 4 |  | eluzelz |  |-  ( k e. ( ZZ>= ` M ) -> k e. ZZ ) | 
						
							| 5 | 4 1 | eleq2s |  |-  ( k e. Z -> k e. ZZ ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> k e. ZZ ) | 
						
							| 7 |  | oveq2 |  |-  ( n = k -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 8 |  | eqid |  |-  ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) | 
						
							| 9 |  | ovex |  |-  ( ( 1 / 2 ) ^ k ) e. _V | 
						
							| 10 | 7 8 9 | fvmpt |  |-  ( k e. ZZ -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 11 | 6 10 | syl |  |-  ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 12 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 13 | 12 | reseq2i |  |-  ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) | 
						
							| 14 |  | nn0ssz |  |-  NN0 C_ ZZ | 
						
							| 15 |  | resmpt |  |-  ( NN0 C_ ZZ -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) | 
						
							| 17 | 13 16 | eqtr3i |  |-  ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) | 
						
							| 18 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 19 | 18 | a1i |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> ( 1 / 2 ) e. CC ) | 
						
							| 20 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 21 |  | halfge0 |  |-  0 <_ ( 1 / 2 ) | 
						
							| 22 |  | absid |  |-  ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) | 
						
							| 23 | 20 21 22 | mp2an |  |-  ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) | 
						
							| 24 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 25 | 23 24 | eqbrtri |  |-  ( abs ` ( 1 / 2 ) ) < 1 | 
						
							| 26 | 25 | a1i |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> ( abs ` ( 1 / 2 ) ) < 1 ) | 
						
							| 27 | 19 26 | expcnv |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) | 
						
							| 28 | 17 27 | eqbrtrid |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 ) | 
						
							| 29 |  | 0z |  |-  0 e. ZZ | 
						
							| 30 |  | zex |  |-  ZZ e. _V | 
						
							| 31 | 30 | mptex |  |-  ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V | 
						
							| 32 | 31 | a1i |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V ) | 
						
							| 33 |  | climres |  |-  ( ( 0 e. ZZ /\ ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V ) -> ( ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 <-> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) ) | 
						
							| 34 | 29 32 33 | sylancr |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> ( ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 <-> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) ) | 
						
							| 35 | 28 34 | mpbid |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) | 
						
							| 36 | 1 2 3 11 35 | climi0 |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R ) | 
						
							| 37 | 1 | uztrn2 |  |-  ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) | 
						
							| 38 |  | 1rp |  |-  1 e. RR+ | 
						
							| 39 |  | rphalfcl |  |-  ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) | 
						
							| 40 | 38 39 | ax-mp |  |-  ( 1 / 2 ) e. RR+ | 
						
							| 41 |  | rpexpcl |  |-  ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) | 
						
							| 42 | 40 6 41 | sylancr |  |-  ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) | 
						
							| 43 |  | rpre |  |-  ( ( ( 1 / 2 ) ^ k ) e. RR+ -> ( ( 1 / 2 ) ^ k ) e. RR ) | 
						
							| 44 |  | rpge0 |  |-  ( ( ( 1 / 2 ) ^ k ) e. RR+ -> 0 <_ ( ( 1 / 2 ) ^ k ) ) | 
						
							| 45 | 43 44 | absidd |  |-  ( ( ( 1 / 2 ) ^ k ) e. RR+ -> ( abs ` ( ( 1 / 2 ) ^ k ) ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 46 | 42 45 | syl |  |-  ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( 1 / 2 ) ^ k ) ) = ( ( 1 / 2 ) ^ k ) ) | 
						
							| 47 | 46 | breq1d |  |-  ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) | 
						
							| 48 | 37 47 | sylan2 |  |-  ( ( ( M e. ZZ /\ R e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) | 
						
							| 49 | 48 | anassrs |  |-  ( ( ( ( M e. ZZ /\ R e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) | 
						
							| 50 | 49 | ralbidva |  |-  ( ( ( M e. ZZ /\ R e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) ) | 
						
							| 51 | 50 | rexbidva |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) ) | 
						
							| 52 | 36 51 | mpbid |  |-  ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) |