Metamath Proof Explorer


Theorem iscmet3lem1

Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscmet3.1 𝑍 = ( ℤ𝑀 )
iscmet3.2 𝐽 = ( MetOpen ‘ 𝐷 )
iscmet3.3 ( 𝜑𝑀 ∈ ℤ )
iscmet3.4 ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
iscmet3.6 ( 𝜑𝐹 : 𝑍𝑋 )
iscmet3.9 ( 𝜑 → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆𝑘 ) ∀ 𝑣 ∈ ( 𝑆𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) )
iscmet3.10 ( 𝜑 → ∀ 𝑘𝑍𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) )
Assertion iscmet3lem1 ( 𝜑𝐹 ∈ ( Cau ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 iscmet3.1 𝑍 = ( ℤ𝑀 )
2 iscmet3.2 𝐽 = ( MetOpen ‘ 𝐷 )
3 iscmet3.3 ( 𝜑𝑀 ∈ ℤ )
4 iscmet3.4 ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
5 iscmet3.6 ( 𝜑𝐹 : 𝑍𝑋 )
6 iscmet3.9 ( 𝜑 → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆𝑘 ) ∀ 𝑣 ∈ ( 𝑆𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) )
7 iscmet3.10 ( 𝜑 → ∀ 𝑘𝑍𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) )
8 1 iscmet3lem3 ( ( 𝑀 ∈ ℤ ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 )
9 3 8 sylan ( ( 𝜑𝑟 ∈ ℝ+ ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 )
10 1 r19.2uz ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∃ 𝑘𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 )
11 9 10 syl ( ( 𝜑𝑟 ∈ ℝ+ ) → ∃ 𝑘𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 )
12 fveq2 ( 𝑛 = 𝑘 → ( 𝑆𝑛 ) = ( 𝑆𝑘 ) )
13 12 eleq2d ( 𝑛 = 𝑘 → ( ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) ↔ ( 𝐹𝑘 ) ∈ ( 𝑆𝑘 ) ) )
14 7 ad2antrr ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ∀ 𝑘𝑍𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) )
15 simpl ( ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) → 𝑘𝑍 )
16 15 adantl ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝑘𝑍 )
17 rsp ( ∀ 𝑘𝑍𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) → ( 𝑘𝑍 → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) ) )
18 14 16 17 sylc ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) )
19 16 1 eleqtrdi ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝑘 ∈ ( ℤ𝑀 ) )
20 eluzfz2 ( 𝑘 ∈ ( ℤ𝑀 ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) )
21 19 20 syl ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑘 ) )
22 13 18 21 rspcdva ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( 𝐹𝑘 ) ∈ ( 𝑆𝑘 ) )
23 12 eleq2d ( 𝑛 = 𝑘 → ( ( 𝐹𝑗 ) ∈ ( 𝑆𝑛 ) ↔ ( 𝐹𝑗 ) ∈ ( 𝑆𝑘 ) ) )
24 oveq2 ( 𝑘 = 𝑗 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑗 ) )
25 fveq2 ( 𝑘 = 𝑗 → ( 𝐹𝑘 ) = ( 𝐹𝑗 ) )
26 25 eleq1d ( 𝑘 = 𝑗 → ( ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) ↔ ( 𝐹𝑗 ) ∈ ( 𝑆𝑛 ) ) )
27 24 26 raleqbidv ( 𝑘 = 𝑗 → ( ∀ 𝑛 ∈ ( 𝑀 ... 𝑘 ) ( 𝐹𝑘 ) ∈ ( 𝑆𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹𝑗 ) ∈ ( 𝑆𝑛 ) ) )
28 1 uztrn2 ( ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) → 𝑗𝑍 )
29 28 adantl ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝑗𝑍 )
30 27 14 29 rspcdva ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ∀ 𝑛 ∈ ( 𝑀 ... 𝑗 ) ( 𝐹𝑗 ) ∈ ( 𝑆𝑛 ) )
31 simprr ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝑗 ∈ ( ℤ𝑘 ) )
32 elfzuzb ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) ↔ ( 𝑘 ∈ ( ℤ𝑀 ) ∧ 𝑗 ∈ ( ℤ𝑘 ) ) )
33 19 31 32 sylanbrc ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝑘 ∈ ( 𝑀 ... 𝑗 ) )
34 23 30 33 rspcdva ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( 𝐹𝑗 ) ∈ ( 𝑆𝑘 ) )
35 6 ad2antrr ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆𝑘 ) ∀ 𝑣 ∈ ( 𝑆𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) )
36 eluzelz ( 𝑘 ∈ ( ℤ𝑀 ) → 𝑘 ∈ ℤ )
37 36 1 eleq2s ( 𝑘𝑍𝑘 ∈ ℤ )
38 37 ad2antrl ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝑘 ∈ ℤ )
39 rsp ( ∀ 𝑘 ∈ ℤ ∀ 𝑢 ∈ ( 𝑆𝑘 ) ∀ 𝑣 ∈ ( 𝑆𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) → ( 𝑘 ∈ ℤ → ∀ 𝑢 ∈ ( 𝑆𝑘 ) ∀ 𝑣 ∈ ( 𝑆𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) )
40 35 38 39 sylc ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ∀ 𝑢 ∈ ( 𝑆𝑘 ) ∀ 𝑣 ∈ ( 𝑆𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) )
41 oveq1 ( 𝑢 = ( 𝐹𝑘 ) → ( 𝑢 𝐷 𝑣 ) = ( ( 𝐹𝑘 ) 𝐷 𝑣 ) )
42 41 breq1d ( 𝑢 = ( 𝐹𝑘 ) → ( ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( ( 𝐹𝑘 ) 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) )
43 oveq2 ( 𝑣 = ( 𝐹𝑗 ) → ( ( 𝐹𝑘 ) 𝐷 𝑣 ) = ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) )
44 43 breq1d ( 𝑣 = ( 𝐹𝑗 ) → ( ( ( 𝐹𝑘 ) 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ↔ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) )
45 42 44 rspc2va ( ( ( ( 𝐹𝑘 ) ∈ ( 𝑆𝑘 ) ∧ ( 𝐹𝑗 ) ∈ ( 𝑆𝑘 ) ) ∧ ∀ 𝑢 ∈ ( 𝑆𝑘 ) ∀ 𝑣 ∈ ( 𝑆𝑘 ) ( 𝑢 𝐷 𝑣 ) < ( ( 1 / 2 ) ↑ 𝑘 ) ) → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) )
46 22 34 40 45 syl21anc ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) )
47 4 ad2antrr ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
48 5 adantr ( ( 𝜑𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍𝑋 )
49 ffvelrn ( ( 𝐹 : 𝑍𝑋𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ 𝑋 )
50 48 15 49 syl2an ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( 𝐹𝑘 ) ∈ 𝑋 )
51 ffvelrn ( ( 𝐹 : 𝑍𝑋𝑗𝑍 ) → ( 𝐹𝑗 ) ∈ 𝑋 )
52 48 28 51 syl2an ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( 𝐹𝑗 ) ∈ 𝑋 )
53 metcl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( 𝐹𝑗 ) ∈ 𝑋 ) → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) ∈ ℝ )
54 47 50 52 53 syl3anc ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) ∈ ℝ )
55 1rp 1 ∈ ℝ+
56 rphalfcl ( 1 ∈ ℝ+ → ( 1 / 2 ) ∈ ℝ+ )
57 55 56 ax-mp ( 1 / 2 ) ∈ ℝ+
58 rpexpcl ( ( ( 1 / 2 ) ∈ ℝ+𝑘 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ )
59 57 38 58 sylancr ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ+ )
60 59 rpred ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ )
61 rpre ( 𝑟 ∈ ℝ+𝑟 ∈ ℝ )
62 61 ad2antlr ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → 𝑟 ∈ ℝ )
63 lttr ( ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) ∈ ℝ ∧ ( ( 1 / 2 ) ↑ 𝑘 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 ) )
64 54 60 62 63 syl3anc ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < ( ( 1 / 2 ) ↑ 𝑘 ) ∧ ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 ) → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 ) )
65 46 64 mpand ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ ( 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ) ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 ) )
66 65 anassrs ( ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ 𝑘𝑍 ) ∧ 𝑗 ∈ ( ℤ𝑘 ) ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 ) )
67 66 ralrimdva ( ( ( 𝜑𝑟 ∈ ℝ+ ) ∧ 𝑘𝑍 ) → ( ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∀ 𝑗 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 ) )
68 67 reximdva ( ( 𝜑𝑟 ∈ ℝ+ ) → ( ∃ 𝑘𝑍 ( ( 1 / 2 ) ↑ 𝑘 ) < 𝑟 → ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 ) )
69 11 68 mpd ( ( 𝜑𝑟 ∈ ℝ+ ) → ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 )
70 69 ralrimiva ( 𝜑 → ∀ 𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 )
71 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
72 4 71 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
73 eqidd ( ( 𝜑𝑗𝑍 ) → ( 𝐹𝑗 ) = ( 𝐹𝑗 ) )
74 eqidd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
75 1 72 3 73 74 5 iscauf ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ∀ 𝑟 ∈ ℝ+𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑗 ) ) < 𝑟 ) )
76 70 75 mpbird ( 𝜑𝐹 ∈ ( Cau ‘ 𝐷 ) )