Metamath Proof Explorer


Theorem heibor1

Description: One half of heibor , that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet and total boundedness here, which follows trivially from the fact that the set of all r -balls is an open cover of X , so finitely many cover X . (Contributed by Jeff Madsen, 16-Jan-2014)

Ref Expression
Hypothesis heibor.1 𝐽 = ( MetOpen ‘ 𝐷 )
Assertion heibor1 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 heibor.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 simpll ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
3 simplr ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝐽 ∈ Comp )
4 simprl ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 ∈ ( Cau ‘ 𝐷 ) )
5 simprr ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 : ℕ ⟶ 𝑋 )
6 1 2 3 4 5 heibor1lem ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ ( 𝑥 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑥 : ℕ ⟶ 𝑋 ) ) → 𝑥 ∈ dom ( ⇝𝑡𝐽 ) )
7 6 expr ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑥 ∈ ( Cau ‘ 𝐷 ) ) → ( 𝑥 : ℕ ⟶ 𝑋𝑥 ∈ dom ( ⇝𝑡𝐽 ) ) )
8 7 ralrimiva ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ∀ 𝑥 ∈ ( Cau ‘ 𝐷 ) ( 𝑥 : ℕ ⟶ 𝑋𝑥 ∈ dom ( ⇝𝑡𝐽 ) ) )
9 nnuz ℕ = ( ℤ ‘ 1 )
10 1zzd ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 1 ∈ ℤ )
11 simpl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
12 9 1 10 11 iscmet3 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ ( Cau ‘ 𝐷 ) ( 𝑥 : ℕ ⟶ 𝑋𝑥 ∈ dom ( ⇝𝑡𝐽 ) ) ) )
13 8 12 mpbird ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) )
14 simplr ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝐽 ∈ Comp )
15 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
16 id ( 𝑧𝑋𝑧𝑋 )
17 rpxr ( 𝑟 ∈ ℝ+𝑟 ∈ ℝ* )
18 1 blopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧𝑋𝑟 ∈ ℝ* ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 )
19 15 16 17 18 syl3an ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧𝑋𝑟 ∈ ℝ+ ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 )
20 19 3com23 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+𝑧𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 )
21 20 3expa ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 )
22 eleq1a ( ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 → ( 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦𝐽 ) )
23 21 22 syl ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧𝑋 ) → ( 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦𝐽 ) )
24 23 rexlimdva ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦𝐽 ) )
25 24 adantlr ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) → 𝑦𝐽 ) )
26 25 abssdv ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ 𝐽 )
27 15 ad2antrr ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
28 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
29 27 28 syl ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 = 𝐽 )
30 blcntr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧𝑋𝑟 ∈ ℝ+ ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) )
31 15 30 syl3an1 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧𝑋𝑟 ∈ ℝ+ ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) )
32 31 3com23 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+𝑧𝑋 ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) )
33 32 3expa ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧𝑋 ) → 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) )
34 ovex ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ V
35 34 elabrex ( 𝑧𝑋 → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
36 35 adantl ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧𝑋 ) → ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
37 elunii ( ( 𝑧 ∈ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ∈ { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → 𝑧 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
38 33 36 37 syl2anc ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧𝑋 ) → 𝑧 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
39 38 ralrimiva ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑧𝑋 𝑧 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
40 39 adantlr ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∀ 𝑧𝑋 𝑧 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
41 nfcv 𝑧 𝑋
42 nfre1 𝑧𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 )
43 42 nfab 𝑧 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) }
44 43 nfuni 𝑧 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) }
45 41 44 dfss3f ( 𝑋 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ↔ ∀ 𝑧𝑋 𝑧 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
46 40 45 sylibr ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝑋 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
47 29 46 eqsstrrd ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝐽 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
48 26 unissd ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ 𝐽 )
49 47 48 eqssd ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → 𝐽 = { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
50 eqid 𝐽 = 𝐽
51 50 cmpcov ( ( 𝐽 ∈ Comp ∧ { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ⊆ 𝐽 𝐽 = { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) 𝐽 = 𝑥 )
52 14 26 49 51 syl3anc ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) 𝐽 = 𝑥 )
53 elin ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ↔ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝑥 ∈ Fin ) )
54 ancom ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝑥 ∈ Fin ) ↔ ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) )
55 53 54 bitri ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ↔ ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) )
56 55 anbi1i ( ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∧ 𝐽 = 𝑥 ) ↔ ( ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ∧ 𝐽 = 𝑥 ) )
57 anass ( ( ( 𝑥 ∈ Fin ∧ 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ∧ 𝐽 = 𝑥 ) ↔ ( 𝑥 ∈ Fin ∧ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝐽 = 𝑥 ) ) )
58 56 57 bitri ( ( 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) ∧ 𝐽 = 𝑥 ) ↔ ( 𝑥 ∈ Fin ∧ ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝐽 = 𝑥 ) ) )
59 58 rexbii2 ( ∃ 𝑥 ∈ ( 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∩ Fin ) 𝐽 = 𝑥 ↔ ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝐽 = 𝑥 ) )
60 52 59 sylib ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝐽 = 𝑥 ) )
61 ancom ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝐽 = 𝑥 ) ↔ ( 𝐽 = 𝑥𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) )
62 eqcom ( 𝑥 = 𝑋𝑋 = 𝑥 )
63 29 eqeq1d ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝑋 = 𝑥 𝐽 = 𝑥 ) )
64 62 63 syl5rbb ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( 𝐽 = 𝑥 𝑥 = 𝑋 ) )
65 64 anbi1d ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝐽 = 𝑥𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) )
66 61 65 syl5bb ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝐽 = 𝑥 ) ↔ ( 𝑥 = 𝑋𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) ) )
67 elpwi ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } → 𝑥 ⊆ { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } )
68 ssabral ( 𝑥 ⊆ { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ↔ ∀ 𝑦𝑥𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) )
69 67 68 sylib ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } → ∀ 𝑦𝑥𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) )
70 69 anim2i ( ( 𝑥 = 𝑋𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ) → ( 𝑥 = 𝑋 ∧ ∀ 𝑦𝑥𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) )
71 66 70 syl6bi ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝐽 = 𝑥 ) → ( 𝑥 = 𝑋 ∧ ∀ 𝑦𝑥𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) )
72 71 reximdv ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑥 ∈ Fin ( 𝑥 ∈ 𝒫 { 𝑦 ∣ ∃ 𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) } ∧ 𝐽 = 𝑥 ) → ∃ 𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀ 𝑦𝑥𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) )
73 60 72 mpd ( ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀ 𝑦𝑥𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) )
74 73 ralrimiva ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ∀ 𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀ 𝑦𝑥𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) )
75 istotbnd ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑟 ∈ ℝ+𝑥 ∈ Fin ( 𝑥 = 𝑋 ∧ ∀ 𝑦𝑥𝑧𝑋 𝑦 = ( 𝑧 ( ball ‘ 𝐷 ) 𝑟 ) ) ) )
76 11 74 75 sylanbrc ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → 𝐷 ∈ ( TotBnd ‘ 𝑋 ) )
77 13 76 jca ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) )