Step |
Hyp |
Ref |
Expression |
1 |
|
heibor.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
heibor1.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
3 |
|
heibor1.4 |
⊢ ( 𝜑 → 𝐽 ∈ Comp ) |
4 |
|
heibor1.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |
5 |
|
heibor1.6 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
6 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
8 |
1
|
mopntop |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
10 |
|
imassrn |
⊢ ( 𝐹 “ 𝑢 ) ⊆ ran 𝐹 |
11 |
5
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑋 ) |
12 |
1
|
mopnuni |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
14 |
11 13
|
sseqtrd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝐽 ) |
15 |
10 14
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) |
16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
17 |
16
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
18 |
9 15 17
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
19 |
|
eleq1a |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) |
21 |
20
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) ) |
22 |
21
|
abssdv |
⊢ ( 𝜑 → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( Clsd ‘ 𝐽 ) ) |
23 |
|
fvex |
⊢ ( Clsd ‘ 𝐽 ) ∈ V |
24 |
23
|
elpw2 |
⊢ ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) ↔ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( Clsd ‘ 𝐽 ) ) |
25 |
22 24
|
sylibr |
⊢ ( 𝜑 → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) ) |
26 |
|
elin |
⊢ ( 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ↔ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∧ 𝑟 ∈ Fin ) ) |
27 |
|
velpw |
⊢ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ 𝑟 ⊆ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
28 |
|
ssabral |
⊢ ( 𝑟 ⊆ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
29 |
27 28
|
bitri |
⊢ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
30 |
29
|
anbi1i |
⊢ ( ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∧ 𝑟 ∈ Fin ) ↔ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) |
31 |
26 30
|
bitri |
⊢ ( 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ↔ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) |
32 |
|
raleq |
⊢ ( 𝑚 = ∅ → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
33 |
32
|
anbi2d |
⊢ ( 𝑚 = ∅ → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
34 |
|
inteq |
⊢ ( 𝑚 = ∅ → ∩ 𝑚 = ∩ ∅ ) |
35 |
34
|
sseq2d |
⊢ ( 𝑚 = ∅ → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑚 = ∅ → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) |
37 |
33 36
|
imbi12d |
⊢ ( 𝑚 = ∅ → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) ) ) |
38 |
|
raleq |
⊢ ( 𝑚 = 𝑦 → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
39 |
38
|
anbi2d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
40 |
|
inteq |
⊢ ( 𝑚 = 𝑦 → ∩ 𝑚 = ∩ 𝑦 ) |
41 |
40
|
sseq2d |
⊢ ( 𝑚 = 𝑦 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
42 |
41
|
rexbidv |
⊢ ( 𝑚 = 𝑦 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
43 |
39 42
|
imbi12d |
⊢ ( 𝑚 = 𝑦 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) ) |
44 |
|
raleq |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
45 |
44
|
anbi2d |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
46 |
|
inteq |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ∩ 𝑚 = ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
47 |
46
|
sseq2d |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
48 |
47
|
rexbidv |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
49 |
45 48
|
imbi12d |
⊢ ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
50 |
|
raleq |
⊢ ( 𝑚 = 𝑟 → ( ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
51 |
50
|
anbi2d |
⊢ ( 𝑚 = 𝑟 → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) ) |
52 |
|
inteq |
⊢ ( 𝑚 = 𝑟 → ∩ 𝑚 = ∩ 𝑟 ) |
53 |
52
|
sseq2d |
⊢ ( 𝑚 = 𝑟 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
54 |
53
|
rexbidv |
⊢ ( 𝑚 = 𝑟 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
55 |
51 54
|
imbi12d |
⊢ ( 𝑚 = 𝑟 → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑚 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) ) |
56 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
57 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
58 |
56 57
|
ax-mp |
⊢ ℤ≥ Fn ℤ |
59 |
|
0z |
⊢ 0 ∈ ℤ |
60 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 0 ∈ ℤ ) → ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ ) |
61 |
58 59 60
|
mp2an |
⊢ ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ |
62 |
|
ssv |
⊢ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ V |
63 |
|
int0 |
⊢ ∩ ∅ = V |
64 |
62 63
|
sseqtrri |
⊢ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ |
65 |
|
imaeq2 |
⊢ ( 𝑘 = ( ℤ≥ ‘ 0 ) → ( 𝐹 “ 𝑘 ) = ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ) |
66 |
65
|
sseq1d |
⊢ ( 𝑘 = ( ℤ≥ ‘ 0 ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ↔ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ ) ) |
67 |
66
|
rspcev |
⊢ ( ( ( ℤ≥ ‘ 0 ) ∈ ran ℤ≥ ∧ ( 𝐹 “ ( ℤ≥ ‘ 0 ) ) ⊆ ∩ ∅ ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) |
68 |
61 64 67
|
mp2an |
⊢ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ |
69 |
68
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ∅ ) |
70 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑛 } ) |
71 |
|
ssralv |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
72 |
70 71
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
73 |
72
|
anim2i |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
74 |
73
|
imim1i |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
75 |
|
ssun2 |
⊢ { 𝑛 } ⊆ ( 𝑦 ∪ { 𝑛 } ) |
76 |
|
ssralv |
⊢ ( { 𝑛 } ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
77 |
75 76
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
78 |
|
vex |
⊢ 𝑛 ∈ V |
79 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
80 |
79
|
rexbidv |
⊢ ( 𝑘 = 𝑛 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
81 |
78 80
|
ralsn |
⊢ ( ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
82 |
77 81
|
sylib |
⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
83 |
|
uzin2 |
⊢ ( ( 𝑢 ∈ ran ℤ≥ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ ) |
84 |
10 11
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ 𝑋 ) |
85 |
84 13
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) |
86 |
16
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ 𝑢 ) ⊆ ∪ 𝐽 ) → ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
87 |
9 85 86
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
88 |
|
sseq2 |
⊢ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ↔ ( 𝐹 “ 𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
89 |
87 88
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) ) |
90 |
|
inss2 |
⊢ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 |
91 |
|
inss1 |
⊢ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 |
92 |
|
imass2 |
⊢ ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ) |
93 |
|
imass2 |
⊢ ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) |
94 |
92 93
|
anim12i |
⊢ ( ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 ∧ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 ) → ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) ) |
95 |
|
ssin |
⊢ ( ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) ↔ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ) |
96 |
94 95
|
sylib |
⊢ ( ( ( 𝑢 ∩ 𝑘 ) ⊆ 𝑘 ∧ ( 𝑢 ∩ 𝑘 ) ⊆ 𝑢 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ) |
97 |
90 91 96
|
mp2an |
⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) |
98 |
|
ss2in |
⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( ( 𝐹 “ 𝑘 ) ∩ ( 𝐹 “ 𝑢 ) ) ⊆ ( ∩ 𝑦 ∩ 𝑛 ) ) |
99 |
97 98
|
sstrid |
⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ( ∩ 𝑦 ∩ 𝑛 ) ) |
100 |
78
|
intunsn |
⊢ ∩ ( 𝑦 ∪ { 𝑛 } ) = ( ∩ 𝑦 ∩ 𝑛 ) |
101 |
99 100
|
sseqtrrdi |
⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑛 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
102 |
101
|
expcom |
⊢ ( ( 𝐹 “ 𝑢 ) ⊆ 𝑛 → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
103 |
89 102
|
syl6 |
⊢ ( 𝜑 → ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
104 |
103
|
impd |
⊢ ( 𝜑 → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
105 |
|
imaeq2 |
⊢ ( 𝑚 = ( 𝑢 ∩ 𝑘 ) → ( 𝐹 “ 𝑚 ) = ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ) |
106 |
105
|
sseq1d |
⊢ ( 𝑚 = ( 𝑢 ∩ 𝑘 ) → ( ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
107 |
106
|
rspcev |
⊢ ( ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ ∧ ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
108 |
107
|
expcom |
⊢ ( ( 𝐹 “ ( 𝑢 ∩ 𝑘 ) ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
109 |
104 108
|
syl6 |
⊢ ( 𝜑 → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
110 |
109
|
com23 |
⊢ ( 𝜑 → ( ( 𝑢 ∩ 𝑘 ) ∈ ran ℤ≥ → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
111 |
83 110
|
syl5 |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ran ℤ≥ ∧ 𝑘 ∈ ran ℤ≥ ) → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
112 |
111
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ ∃ 𝑘 ∈ ran ℤ≥ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
113 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ ran ℤ≥ ∃ 𝑘 ∈ ran ℤ≥ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ↔ ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) ) |
114 |
|
imaeq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑘 ) ) |
115 |
114
|
sseq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
116 |
115
|
cbvrexvw |
⊢ ( ∃ 𝑚 ∈ ran ℤ≥ ( 𝐹 “ 𝑚 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ↔ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) |
117 |
112 113 116
|
3imtr3g |
⊢ ( 𝜑 → ( ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
118 |
117
|
expd |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
119 |
82 118
|
syl5 |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
120 |
119
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
121 |
74 120
|
sylcom |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) |
122 |
121
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ ( 𝑦 ∪ { 𝑛 } ) ) ) ) |
123 |
37 43 49 55 69 122
|
findcard2 |
⊢ ( 𝑟 ∈ Fin → ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
124 |
123
|
com12 |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝑟 ∈ Fin → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) ) |
125 |
124
|
impr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ) |
126 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
127 |
|
inss1 |
⊢ ( 𝑘 ∩ ℕ ) ⊆ 𝑘 |
128 |
|
imass2 |
⊢ ( ( 𝑘 ∩ ℕ ) ⊆ 𝑘 → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) ) |
129 |
127 128
|
ax-mp |
⊢ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) |
130 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
131 |
|
1z |
⊢ 1 ∈ ℤ |
132 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 1 ∈ ℤ ) → ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ ) |
133 |
58 131 132
|
mp2an |
⊢ ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ |
134 |
130 133
|
eqeltri |
⊢ ℕ ∈ ran ℤ≥ |
135 |
|
uzin2 |
⊢ ( ( 𝑘 ∈ ran ℤ≥ ∧ ℕ ∈ ran ℤ≥ ) → ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ ) |
136 |
134 135
|
mpan2 |
⊢ ( 𝑘 ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ ) |
137 |
|
uzn0 |
⊢ ( ( 𝑘 ∩ ℕ ) ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ≠ ∅ ) |
138 |
136 137
|
syl |
⊢ ( 𝑘 ∈ ran ℤ≥ → ( 𝑘 ∩ ℕ ) ≠ ∅ ) |
139 |
|
n0 |
⊢ ( ( 𝑘 ∩ ℕ ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) ) |
140 |
138 139
|
sylib |
⊢ ( 𝑘 ∈ ran ℤ≥ → ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) ) |
141 |
|
fnfun |
⊢ ( 𝐹 Fn ℕ → Fun 𝐹 ) |
142 |
|
inss2 |
⊢ ( 𝑘 ∩ ℕ ) ⊆ ℕ |
143 |
|
fndm |
⊢ ( 𝐹 Fn ℕ → dom 𝐹 = ℕ ) |
144 |
142 143
|
sseqtrrid |
⊢ ( 𝐹 Fn ℕ → ( 𝑘 ∩ ℕ ) ⊆ dom 𝐹 ) |
145 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ ( 𝑘 ∩ ℕ ) ⊆ dom 𝐹 ) → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ) ) |
146 |
141 144 145
|
syl2anc |
⊢ ( 𝐹 Fn ℕ → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ) ) |
147 |
|
ne0i |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) |
148 |
146 147
|
syl6 |
⊢ ( 𝐹 Fn ℕ → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
149 |
148
|
exlimdv |
⊢ ( 𝐹 Fn ℕ → ( ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
150 |
140 149
|
syl5 |
⊢ ( 𝐹 Fn ℕ → ( 𝑘 ∈ ran ℤ≥ → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) ) |
151 |
150
|
imp |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) |
152 |
|
ssn0 |
⊢ ( ( ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹 “ 𝑘 ) ∧ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) → ( 𝐹 “ 𝑘 ) ≠ ∅ ) |
153 |
129 151 152
|
sylancr |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( 𝐹 “ 𝑘 ) ≠ ∅ ) |
154 |
|
ssn0 |
⊢ ( ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 ∧ ( 𝐹 “ 𝑘 ) ≠ ∅ ) → ∩ 𝑟 ≠ ∅ ) |
155 |
154
|
expcom |
⊢ ( ( 𝐹 “ 𝑘 ) ≠ ∅ → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
156 |
153 155
|
syl |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ≥ ) → ( ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
157 |
156
|
rexlimdva |
⊢ ( 𝐹 Fn ℕ → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
158 |
126 157
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ( ∃ 𝑘 ∈ ran ℤ≥ ( 𝐹 “ 𝑘 ) ⊆ ∩ 𝑟 → ∩ 𝑟 ≠ ∅ ) ) |
160 |
125 159
|
mpd |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∩ 𝑟 ≠ ∅ ) |
161 |
160
|
necomd |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∅ ≠ ∩ 𝑟 ) |
162 |
161
|
neneqd |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑘 ∈ 𝑟 ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ¬ ∅ = ∩ 𝑟 ) |
163 |
31 162
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ) → ¬ ∅ = ∩ 𝑟 ) |
164 |
163
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) |
165 |
|
0ex |
⊢ ∅ ∈ V |
166 |
|
zex |
⊢ ℤ ∈ V |
167 |
166
|
pwex |
⊢ 𝒫 ℤ ∈ V |
168 |
|
frn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ ) |
169 |
56 168
|
ax-mp |
⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
170 |
167 169
|
ssexi |
⊢ ran ℤ≥ ∈ V |
171 |
170
|
abrexex |
⊢ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ V |
172 |
|
elfi |
⊢ ( ( ∅ ∈ V ∧ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ V ) → ( ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ↔ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) ) |
173 |
165 171 172
|
mp2an |
⊢ ( ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ↔ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∩ Fin ) ∅ = ∩ 𝑟 ) |
174 |
164 173
|
sylnibr |
⊢ ( 𝜑 → ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) |
175 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
176 |
|
cmpfi |
⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) ) |
177 |
175 176
|
syl |
⊢ ( 𝐽 ∈ Comp → ( 𝐽 ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) ) |
178 |
177
|
ibi |
⊢ ( 𝐽 ∈ Comp → ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ) |
179 |
|
fveq2 |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( fi ‘ 𝑚 ) = ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) |
180 |
179
|
eleq2d |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∅ ∈ ( fi ‘ 𝑚 ) ↔ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
181 |
180
|
notbid |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) ↔ ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
182 |
|
inteq |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ∩ 𝑚 = ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
183 |
182
|
neeq1d |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∩ 𝑚 ≠ ∅ ↔ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ≠ ∅ ) ) |
184 |
|
n0 |
⊢ ( ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
185 |
183 184
|
bitrdi |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ∩ 𝑚 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) |
186 |
181 185
|
imbi12d |
⊢ ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ( ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) ↔ ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
187 |
186
|
rspccv |
⊢ ( ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → ∩ 𝑚 ≠ ∅ ) → ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) → ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
188 |
178 187
|
syl |
⊢ ( 𝐽 ∈ Comp → ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) → ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) ) ) |
189 |
3 25 174 188
|
syl3c |
⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
190 |
|
lmrel |
⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) |
191 |
|
r19.23v |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
192 |
191
|
albii |
⊢ ( ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑘 ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
193 |
|
fvex |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ∈ V |
194 |
|
eleq2 |
⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → ( 𝑦 ∈ 𝑘 ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
195 |
193 194
|
ceqsalv |
⊢ ( ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
196 |
195
|
ralbii |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
197 |
|
ralcom4 |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ↔ ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
198 |
196 197
|
bitr3i |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∀ 𝑘 ∀ 𝑢 ∈ ran ℤ≥ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
199 |
|
vex |
⊢ 𝑦 ∈ V |
200 |
199
|
elintab |
⊢ ( 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∀ 𝑘 ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ 𝑘 ) ) |
201 |
192 198 200
|
3bitr4i |
⊢ ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) |
202 |
|
eqid |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) |
203 |
|
imaeq2 |
⊢ ( 𝑢 = ℕ → ( 𝐹 “ 𝑢 ) = ( 𝐹 “ ℕ ) ) |
204 |
203
|
fveq2d |
⊢ ( 𝑢 = ℕ → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) |
205 |
204
|
rspceeqv |
⊢ ( ( ℕ ∈ ran ℤ≥ ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) → ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
206 |
134 202 205
|
mp2an |
⊢ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) |
207 |
|
fvex |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ V |
208 |
|
eqeq1 |
⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
209 |
208
|
rexbidv |
⊢ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) → ( ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ) |
210 |
207 209
|
elab |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ↔ ∃ 𝑢 ∈ ran ℤ≥ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
211 |
206 210
|
mpbir |
⊢ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } |
212 |
|
intss1 |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } → ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) |
213 |
211 212
|
ax-mp |
⊢ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) |
214 |
|
imassrn |
⊢ ( 𝐹 “ ℕ ) ⊆ ran 𝐹 |
215 |
214 14
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ ℕ ) ⊆ ∪ 𝐽 ) |
216 |
16
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ℕ ) ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ ∪ 𝐽 ) |
217 |
9 215 216
|
syl2anc |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ ∪ 𝐽 ) |
218 |
217 13
|
sseqtrrd |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ 𝑋 ) |
219 |
213 218
|
sstrid |
⊢ ( 𝜑 → ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ⊆ 𝑋 ) |
220 |
219
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝑦 ∈ 𝑋 ) |
221 |
201 220
|
sylan2b |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → 𝑦 ∈ 𝑋 ) |
222 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
223 |
130 7 222
|
iscau3 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) ) ) |
224 |
4 223
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) ) |
225 |
224
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) ) |
226 |
|
simp3 |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
227 |
226
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
228 |
227
|
reximi |
⊢ ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
229 |
228
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
230 |
225 229
|
syl |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
231 |
230
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ) |
232 |
|
rphalfcl |
⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ ) |
233 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) |
234 |
233
|
2ralbidv |
⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) |
235 |
234
|
rexbidv |
⊢ ( 𝑦 = ( 𝑟 / 2 ) → ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) ) |
236 |
235
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < 𝑦 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) |
237 |
231 232 236
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ) |
238 |
5
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
239 |
238
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → Fun 𝐹 ) |
240 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝐽 ∈ Top ) |
241 |
|
imassrn |
⊢ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ran 𝐹 |
242 |
241 14
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ) |
243 |
242
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ) |
244 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
245 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑚 ∈ ℤ ) → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) |
246 |
58 244 245
|
sylancr |
⊢ ( 𝑚 ∈ ℕ → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) |
247 |
246
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ ) |
248 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) |
249 |
|
imaeq2 |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( 𝐹 “ 𝑢 ) = ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) |
250 |
249
|
fveq2d |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
251 |
250
|
eleq2d |
⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑚 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ) |
252 |
251
|
rspcv |
⊢ ( ( ℤ≥ ‘ 𝑚 ) ∈ ran ℤ≥ → ( ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ) |
253 |
247 248 252
|
sylc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
254 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
255 |
221
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ 𝑋 ) |
256 |
232
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
257 |
256
|
rpxrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
258 |
1
|
blopn |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
259 |
254 255 257 258
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ) |
260 |
|
blcntr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
261 |
254 255 256 260
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
262 |
16
|
clsndisj |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ⊆ ∪ 𝐽 ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) ∧ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ) |
263 |
240 243 253 259 261 262
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ) |
264 |
|
n0 |
⊢ ( ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ ↔ ∃ 𝑛 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) |
265 |
|
inss2 |
⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ⊆ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) |
266 |
265
|
sseli |
⊢ ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) |
267 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 ) |
268 |
266 267
|
sylan2 |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 ) |
269 |
|
inss1 |
⊢ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) |
270 |
269
|
sseli |
⊢ ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
271 |
270
|
adantl |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
272 |
|
eleq1a |
⊢ ( 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑛 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
273 |
271 272
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ( ( 𝐹 ‘ 𝑘 ) = 𝑛 → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
274 |
273
|
reximdv |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) = 𝑛 → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
275 |
268 274
|
mpd |
⊢ ( ( Fun 𝐹 ∧ 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
276 |
275
|
ex |
⊢ ( Fun 𝐹 → ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
277 |
276
|
exlimdv |
⊢ ( Fun 𝐹 → ( ∃ 𝑛 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
278 |
264 277
|
syl5bi |
⊢ ( Fun 𝐹 → ( ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ≥ ‘ 𝑚 ) ) ) ≠ ∅ → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
279 |
239 263 278
|
sylc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
280 |
|
r19.29 |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) |
281 |
|
uznnssnn |
⊢ ( 𝑚 ∈ ℕ → ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ ) |
282 |
281
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ ) |
283 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) |
284 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
285 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℝ+ ) |
286 |
285 232
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
287 |
286
|
rpxrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ* ) |
288 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑦 ∈ 𝑋 ) |
289 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
290 |
|
eluznn |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) |
291 |
290
|
ad2ant2lr |
⊢ ( ( ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → 𝑘 ∈ ℕ ) |
292 |
291
|
ad2ant2lr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑘 ∈ ℕ ) |
293 |
289 292
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
294 |
|
elbl3 |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) ) |
295 |
284 287 288 293 294
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) ) |
296 |
283 295
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) |
297 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
298 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
299 |
|
eluznn |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑛 ∈ ℕ ) |
300 |
292 298 299
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑛 ∈ ℕ ) |
301 |
289 300
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
302 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
303 |
297 293 301 302
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
304 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) |
305 |
297 293 288 304
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) |
306 |
286
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ ) |
307 |
|
lt2add |
⊢ ( ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) ∧ ( ( 𝑟 / 2 ) ∈ ℝ ∧ ( 𝑟 / 2 ) ∈ ℝ ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) |
308 |
303 305 306 306 307
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) |
309 |
296 308
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) ) |
310 |
285
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℂ ) |
311 |
310
|
2halvesd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) = 𝑟 ) |
312 |
311
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ↔ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) ) |
313 |
309 312
|
sylibd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) ) |
314 |
|
mettri2 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) |
315 |
297 293 301 288 314
|
syl13anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ) |
316 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ) |
317 |
297 301 288 316
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ) |
318 |
303 305
|
readdcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∈ ℝ ) |
319 |
285
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → 𝑟 ∈ ℝ ) |
320 |
|
lelttr |
⊢ ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ∈ ℝ ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
321 |
317 318 319 320
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) ∧ ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
322 |
315 321
|
mpand |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) < 𝑟 → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
323 |
313 322
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
324 |
323
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
325 |
324
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
326 |
325
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
327 |
326
|
com23 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
328 |
327
|
impd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
329 |
328
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
330 |
|
ssrexv |
⊢ ( ( ℤ≥ ‘ 𝑚 ) ⊆ ℕ → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
331 |
282 329 330
|
sylsyld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
332 |
221 331
|
syldanl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
333 |
280 332
|
syl5 |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
334 |
279 333
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ 𝑚 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
335 |
334
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
336 |
335
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) |
337 |
237 336
|
mpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) |
338 |
337
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) |
339 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
340 |
1 7 130 222 339 5
|
lmmbrf |
⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝑦 ∈ 𝑋 ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
341 |
340
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝑦 ∈ 𝑋 ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) ) |
342 |
221 338 341
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ≥ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
343 |
201 342
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
344 |
|
releldm |
⊢ ( ( Rel ( ⇝𝑡 ‘ 𝐽 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
345 |
190 343 344
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∩ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ≥ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ 𝑢 ) ) } ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
346 |
189 345
|
exlimddv |
⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |