Metamath Proof Explorer


Theorem heibor1lem

Description: Lemma for heibor1 . A compact metric space is complete. This proof works by considering the collection cls ( F " ( ZZ>=n ) ) for each n e. NN , which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain ( F " ( ZZ>=m ) ) for some m . Thus, by compactness, the intersection contains a point y , which must then be the convergent point of F . (Contributed by Jeff Madsen, 17-Jan-2014) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses heibor.1 𝐽 = ( MetOpen ‘ 𝐷 )
heibor1.3 ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
heibor1.4 ( 𝜑𝐽 ∈ Comp )
heibor1.5 ( 𝜑𝐹 ∈ ( Cau ‘ 𝐷 ) )
heibor1.6 ( 𝜑𝐹 : ℕ ⟶ 𝑋 )
Assertion heibor1lem ( 𝜑𝐹 ∈ dom ( ⇝𝑡𝐽 ) )

Proof

Step Hyp Ref Expression
1 heibor.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 heibor1.3 ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
3 heibor1.4 ( 𝜑𝐽 ∈ Comp )
4 heibor1.5 ( 𝜑𝐹 ∈ ( Cau ‘ 𝐷 ) )
5 heibor1.6 ( 𝜑𝐹 : ℕ ⟶ 𝑋 )
6 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
7 2 6 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
8 1 mopntop ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top )
9 7 8 syl ( 𝜑𝐽 ∈ Top )
10 imassrn ( 𝐹𝑢 ) ⊆ ran 𝐹
11 5 frnd ( 𝜑 → ran 𝐹𝑋 )
12 1 mopnuni ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = 𝐽 )
13 7 12 syl ( 𝜑𝑋 = 𝐽 )
14 11 13 sseqtrd ( 𝜑 → ran 𝐹 𝐽 )
15 10 14 sstrid ( 𝜑 → ( 𝐹𝑢 ) ⊆ 𝐽 )
16 eqid 𝐽 = 𝐽
17 16 clscld ( ( 𝐽 ∈ Top ∧ ( 𝐹𝑢 ) ⊆ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) )
18 9 15 17 syl2anc ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) )
19 eleq1a ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∈ ( Clsd ‘ 𝐽 ) → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) )
20 18 19 syl ( 𝜑 → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) )
21 20 rexlimdvw ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑘 ∈ ( Clsd ‘ 𝐽 ) ) )
22 21 abssdv ( 𝜑 → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ⊆ ( Clsd ‘ 𝐽 ) )
23 fvex ( Clsd ‘ 𝐽 ) ∈ V
24 23 elpw2 ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) ↔ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ⊆ ( Clsd ‘ 𝐽 ) )
25 22 24 sylibr ( 𝜑 → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) )
26 elin ( 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∩ Fin ) ↔ ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∧ 𝑟 ∈ Fin ) )
27 velpw ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ↔ 𝑟 ⊆ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } )
28 ssabral ( 𝑟 ⊆ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ↔ ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
29 27 28 bitri ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ↔ ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
30 29 anbi1i ( ( 𝑟 ∈ 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∧ 𝑟 ∈ Fin ) ↔ ( ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ 𝑟 ∈ Fin ) )
31 26 30 bitri ( 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∩ Fin ) ↔ ( ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ 𝑟 ∈ Fin ) )
32 raleq ( 𝑚 = ∅ → ( ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
33 32 anbi2d ( 𝑚 = ∅ → ( ( 𝜑 ∧ ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ) )
34 inteq ( 𝑚 = ∅ → 𝑚 = ∅ )
35 34 sseq2d ( 𝑚 = ∅ → ( ( 𝐹𝑘 ) ⊆ 𝑚 ↔ ( 𝐹𝑘 ) ⊆ ∅ ) )
36 35 rexbidv ( 𝑚 = ∅ → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ∅ ) )
37 33 36 imbi12d ( 𝑚 = ∅ → ( ( ( 𝜑 ∧ ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ∅ ) ) )
38 raleq ( 𝑚 = 𝑦 → ( ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
39 38 anbi2d ( 𝑚 = 𝑦 → ( ( 𝜑 ∧ ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ) )
40 inteq ( 𝑚 = 𝑦 𝑚 = 𝑦 )
41 40 sseq2d ( 𝑚 = 𝑦 → ( ( 𝐹𝑘 ) ⊆ 𝑚 ↔ ( 𝐹𝑘 ) ⊆ 𝑦 ) )
42 41 rexbidv ( 𝑚 = 𝑦 → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 ) )
43 39 42 imbi12d ( 𝑚 = 𝑦 → ( ( ( 𝜑 ∧ ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 ) ) )
44 raleq ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
45 44 anbi2d ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝜑 ∧ ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ) )
46 inteq ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → 𝑚 = ( 𝑦 ∪ { 𝑛 } ) )
47 46 sseq2d ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝐹𝑘 ) ⊆ 𝑚 ↔ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
48 47 rexbidv ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
49 45 48 imbi12d ( 𝑚 = ( 𝑦 ∪ { 𝑛 } ) → ( ( ( 𝜑 ∧ ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) ) )
50 raleq ( 𝑚 = 𝑟 → ( ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
51 50 anbi2d ( 𝑚 = 𝑟 → ( ( 𝜑 ∧ ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ↔ ( 𝜑 ∧ ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ) )
52 inteq ( 𝑚 = 𝑟 𝑚 = 𝑟 )
53 52 sseq2d ( 𝑚 = 𝑟 → ( ( 𝐹𝑘 ) ⊆ 𝑚 ↔ ( 𝐹𝑘 ) ⊆ 𝑟 ) )
54 53 rexbidv ( 𝑚 = 𝑟 → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑚 ↔ ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑟 ) )
55 51 54 imbi12d ( 𝑚 = 𝑟 → ( ( ( 𝜑 ∧ ∀ 𝑘𝑚𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑚 ) ↔ ( ( 𝜑 ∧ ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑟 ) ) )
56 uzf : ℤ ⟶ 𝒫 ℤ
57 ffn ( ℤ : ℤ ⟶ 𝒫 ℤ → ℤ Fn ℤ )
58 56 57 ax-mp Fn ℤ
59 0z 0 ∈ ℤ
60 fnfvelrn ( ( ℤ Fn ℤ ∧ 0 ∈ ℤ ) → ( ℤ ‘ 0 ) ∈ ran ℤ )
61 58 59 60 mp2an ( ℤ ‘ 0 ) ∈ ran ℤ
62 ssv ( 𝐹 “ ( ℤ ‘ 0 ) ) ⊆ V
63 int0 ∅ = V
64 62 63 sseqtrri ( 𝐹 “ ( ℤ ‘ 0 ) ) ⊆
65 imaeq2 ( 𝑘 = ( ℤ ‘ 0 ) → ( 𝐹𝑘 ) = ( 𝐹 “ ( ℤ ‘ 0 ) ) )
66 65 sseq1d ( 𝑘 = ( ℤ ‘ 0 ) → ( ( 𝐹𝑘 ) ⊆ ∅ ↔ ( 𝐹 “ ( ℤ ‘ 0 ) ) ⊆ ∅ ) )
67 66 rspcev ( ( ( ℤ ‘ 0 ) ∈ ran ℤ ∧ ( 𝐹 “ ( ℤ ‘ 0 ) ) ⊆ ∅ ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ∅ )
68 61 64 67 mp2an 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆
69 68 a1i ( ( 𝜑 ∧ ∀ 𝑘 ∈ ∅ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ∅ )
70 ssun1 𝑦 ⊆ ( 𝑦 ∪ { 𝑛 } )
71 ssralv ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
72 70 71 ax-mp ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
73 72 anim2i ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ( 𝜑 ∧ ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
74 73 imim1i ( ( ( 𝜑 ∧ ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 ) )
75 ssun2 { 𝑛 } ⊆ ( 𝑦 ∪ { 𝑛 } )
76 ssralv ( { 𝑛 } ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
77 75 76 ax-mp ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
78 vex 𝑛 ∈ V
79 eqeq1 ( 𝑘 = 𝑛 → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
80 79 rexbidv ( 𝑘 = 𝑛 → ( ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
81 78 80 ralsn ( ∀ 𝑘 ∈ { 𝑛 } ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
82 77 81 sylib ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ∃ 𝑢 ∈ ran ℤ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
83 uzin2 ( ( 𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ ) → ( 𝑢𝑘 ) ∈ ran ℤ )
84 10 11 sstrid ( 𝜑 → ( 𝐹𝑢 ) ⊆ 𝑋 )
85 84 13 sseqtrd ( 𝜑 → ( 𝐹𝑢 ) ⊆ 𝐽 )
86 16 sscls ( ( 𝐽 ∈ Top ∧ ( 𝐹𝑢 ) ⊆ 𝐽 ) → ( 𝐹𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
87 9 85 86 syl2anc ( 𝜑 → ( 𝐹𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
88 sseq2 ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ( ( 𝐹𝑢 ) ⊆ 𝑛 ↔ ( 𝐹𝑢 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
89 87 88 syl5ibrcom ( 𝜑 → ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ( 𝐹𝑢 ) ⊆ 𝑛 ) )
90 inss2 ( 𝑢𝑘 ) ⊆ 𝑘
91 inss1 ( 𝑢𝑘 ) ⊆ 𝑢
92 imass2 ( ( 𝑢𝑘 ) ⊆ 𝑘 → ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝐹𝑘 ) )
93 imass2 ( ( 𝑢𝑘 ) ⊆ 𝑢 → ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝐹𝑢 ) )
94 92 93 anim12i ( ( ( 𝑢𝑘 ) ⊆ 𝑘 ∧ ( 𝑢𝑘 ) ⊆ 𝑢 ) → ( ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝐹𝑘 ) ∧ ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝐹𝑢 ) ) )
95 ssin ( ( ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝐹𝑘 ) ∧ ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝐹𝑢 ) ) ↔ ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( ( 𝐹𝑘 ) ∩ ( 𝐹𝑢 ) ) )
96 94 95 sylib ( ( ( 𝑢𝑘 ) ⊆ 𝑘 ∧ ( 𝑢𝑘 ) ⊆ 𝑢 ) → ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( ( 𝐹𝑘 ) ∩ ( 𝐹𝑢 ) ) )
97 90 91 96 mp2an ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( ( 𝐹𝑘 ) ∩ ( 𝐹𝑢 ) )
98 ss2in ( ( ( 𝐹𝑘 ) ⊆ 𝑦 ∧ ( 𝐹𝑢 ) ⊆ 𝑛 ) → ( ( 𝐹𝑘 ) ∩ ( 𝐹𝑢 ) ) ⊆ ( 𝑦𝑛 ) )
99 97 98 sstrid ( ( ( 𝐹𝑘 ) ⊆ 𝑦 ∧ ( 𝐹𝑢 ) ⊆ 𝑛 ) → ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝑦𝑛 ) )
100 78 intunsn ( 𝑦 ∪ { 𝑛 } ) = ( 𝑦𝑛 )
101 99 100 sseqtrrdi ( ( ( 𝐹𝑘 ) ⊆ 𝑦 ∧ ( 𝐹𝑢 ) ⊆ 𝑛 ) → ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝑦 ∪ { 𝑛 } ) )
102 101 expcom ( ( 𝐹𝑢 ) ⊆ 𝑛 → ( ( 𝐹𝑘 ) ⊆ 𝑦 → ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
103 89 102 syl6 ( 𝜑 → ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ( ( 𝐹𝑘 ) ⊆ 𝑦 → ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) ) )
104 103 impd ( 𝜑 → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
105 imaeq2 ( 𝑚 = ( 𝑢𝑘 ) → ( 𝐹𝑚 ) = ( 𝐹 “ ( 𝑢𝑘 ) ) )
106 105 sseq1d ( 𝑚 = ( 𝑢𝑘 ) → ( ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ↔ ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
107 106 rspcev ( ( ( 𝑢𝑘 ) ∈ ran ℤ ∧ ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) → ∃ 𝑚 ∈ ran ℤ ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) )
108 107 expcom ( ( 𝐹 “ ( 𝑢𝑘 ) ) ⊆ ( 𝑦 ∪ { 𝑛 } ) → ( ( 𝑢𝑘 ) ∈ ran ℤ → ∃ 𝑚 ∈ ran ℤ ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
109 104 108 syl6 ( 𝜑 → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ( ( 𝑢𝑘 ) ∈ ran ℤ → ∃ 𝑚 ∈ ran ℤ ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) ) )
110 109 com23 ( 𝜑 → ( ( 𝑢𝑘 ) ∈ ran ℤ → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) ) )
111 83 110 syl5 ( 𝜑 → ( ( 𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ ) → ( ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) ) )
112 111 rexlimdvv ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ∃ 𝑚 ∈ ran ℤ ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
113 reeanv ( ∃ 𝑢 ∈ ran ℤ𝑘 ∈ ran ℤ ( 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ ( 𝐹𝑘 ) ⊆ 𝑦 ) ↔ ( ∃ 𝑢 ∈ ran ℤ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 ) )
114 imaeq2 ( 𝑚 = 𝑘 → ( 𝐹𝑚 ) = ( 𝐹𝑘 ) )
115 114 sseq1d ( 𝑚 = 𝑘 → ( ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ↔ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
116 115 cbvrexvw ( ∃ 𝑚 ∈ ran ℤ ( 𝐹𝑚 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ↔ ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) )
117 112 113 116 3imtr3g ( 𝜑 → ( ( ∃ 𝑢 ∈ ran ℤ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
118 117 expd ( 𝜑 → ( ∃ 𝑢 ∈ ran ℤ 𝑛 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) ) )
119 82 118 syl5 ( 𝜑 → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) ) )
120 119 imp ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
121 74 120 sylcom ( ( ( 𝜑 ∧ ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) )
122 121 a1i ( 𝑦 ∈ Fin → ( ( ( 𝜑 ∧ ∀ 𝑘𝑦𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑦 ) → ( ( 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑛 } ) ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ ( 𝑦 ∪ { 𝑛 } ) ) ) )
123 37 43 49 55 69 122 findcard2 ( 𝑟 ∈ Fin → ( ( 𝜑 ∧ ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑟 ) )
124 123 com12 ( ( 𝜑 ∧ ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ( 𝑟 ∈ Fin → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑟 ) )
125 124 impr ( ( 𝜑 ∧ ( ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑟 )
126 5 ffnd ( 𝜑𝐹 Fn ℕ )
127 inss1 ( 𝑘 ∩ ℕ ) ⊆ 𝑘
128 imass2 ( ( 𝑘 ∩ ℕ ) ⊆ 𝑘 → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹𝑘 ) )
129 127 128 ax-mp ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹𝑘 )
130 nnuz ℕ = ( ℤ ‘ 1 )
131 1z 1 ∈ ℤ
132 fnfvelrn ( ( ℤ Fn ℤ ∧ 1 ∈ ℤ ) → ( ℤ ‘ 1 ) ∈ ran ℤ )
133 58 131 132 mp2an ( ℤ ‘ 1 ) ∈ ran ℤ
134 130 133 eqeltri ℕ ∈ ran ℤ
135 uzin2 ( ( 𝑘 ∈ ran ℤ ∧ ℕ ∈ ran ℤ ) → ( 𝑘 ∩ ℕ ) ∈ ran ℤ )
136 134 135 mpan2 ( 𝑘 ∈ ran ℤ → ( 𝑘 ∩ ℕ ) ∈ ran ℤ )
137 uzn0 ( ( 𝑘 ∩ ℕ ) ∈ ran ℤ → ( 𝑘 ∩ ℕ ) ≠ ∅ )
138 136 137 syl ( 𝑘 ∈ ran ℤ → ( 𝑘 ∩ ℕ ) ≠ ∅ )
139 n0 ( ( 𝑘 ∩ ℕ ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) )
140 138 139 sylib ( 𝑘 ∈ ran ℤ → ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) )
141 fnfun ( 𝐹 Fn ℕ → Fun 𝐹 )
142 inss2 ( 𝑘 ∩ ℕ ) ⊆ ℕ
143 fndm ( 𝐹 Fn ℕ → dom 𝐹 = ℕ )
144 142 143 sseqtrrid ( 𝐹 Fn ℕ → ( 𝑘 ∩ ℕ ) ⊆ dom 𝐹 )
145 funfvima2 ( ( Fun 𝐹 ∧ ( 𝑘 ∩ ℕ ) ⊆ dom 𝐹 ) → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ) )
146 141 144 145 syl2anc ( 𝐹 Fn ℕ → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ) )
147 ne0i ( ( 𝐹𝑦 ) ∈ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ )
148 146 147 syl6 ( 𝐹 Fn ℕ → ( 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) )
149 148 exlimdv ( 𝐹 Fn ℕ → ( ∃ 𝑦 𝑦 ∈ ( 𝑘 ∩ ℕ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) )
150 140 149 syl5 ( 𝐹 Fn ℕ → ( 𝑘 ∈ ran ℤ → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) )
151 150 imp ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ ) → ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ )
152 ssn0 ( ( ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ⊆ ( 𝐹𝑘 ) ∧ ( 𝐹 “ ( 𝑘 ∩ ℕ ) ) ≠ ∅ ) → ( 𝐹𝑘 ) ≠ ∅ )
153 129 151 152 sylancr ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ ) → ( 𝐹𝑘 ) ≠ ∅ )
154 ssn0 ( ( ( 𝐹𝑘 ) ⊆ 𝑟 ∧ ( 𝐹𝑘 ) ≠ ∅ ) → 𝑟 ≠ ∅ )
155 154 expcom ( ( 𝐹𝑘 ) ≠ ∅ → ( ( 𝐹𝑘 ) ⊆ 𝑟 𝑟 ≠ ∅ ) )
156 153 155 syl ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ran ℤ ) → ( ( 𝐹𝑘 ) ⊆ 𝑟 𝑟 ≠ ∅ ) )
157 156 rexlimdva ( 𝐹 Fn ℕ → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑟 𝑟 ≠ ∅ ) )
158 126 157 syl ( 𝜑 → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑟 𝑟 ≠ ∅ ) )
159 158 adantr ( ( 𝜑 ∧ ( ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ( ∃ 𝑘 ∈ ran ℤ ( 𝐹𝑘 ) ⊆ 𝑟 𝑟 ≠ ∅ ) )
160 125 159 mpd ( ( 𝜑 ∧ ( ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → 𝑟 ≠ ∅ )
161 160 necomd ( ( 𝜑 ∧ ( ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ∅ ≠ 𝑟 )
162 161 neneqd ( ( 𝜑 ∧ ( ∀ 𝑘𝑟𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∧ 𝑟 ∈ Fin ) ) → ¬ ∅ = 𝑟 )
163 31 162 sylan2b ( ( 𝜑𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∩ Fin ) ) → ¬ ∅ = 𝑟 )
164 163 nrexdv ( 𝜑 → ¬ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∩ Fin ) ∅ = 𝑟 )
165 0ex ∅ ∈ V
166 zex ℤ ∈ V
167 166 pwex 𝒫 ℤ ∈ V
168 frn ( ℤ : ℤ ⟶ 𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ )
169 56 168 ax-mp ran ℤ ⊆ 𝒫 ℤ
170 167 169 ssexi ran ℤ ∈ V
171 170 abrexex { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∈ V
172 elfi ( ( ∅ ∈ V ∧ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∈ V ) → ( ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) ↔ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∩ Fin ) ∅ = 𝑟 ) )
173 165 171 172 mp2an ( ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) ↔ ∃ 𝑟 ∈ ( 𝒫 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∩ Fin ) ∅ = 𝑟 )
174 164 173 sylnibr ( 𝜑 → ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) )
175 cmptop ( 𝐽 ∈ Comp → 𝐽 ∈ Top )
176 cmpfi ( 𝐽 ∈ Top → ( 𝐽 ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → 𝑚 ≠ ∅ ) ) )
177 175 176 syl ( 𝐽 ∈ Comp → ( 𝐽 ∈ Comp ↔ ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → 𝑚 ≠ ∅ ) ) )
178 177 ibi ( 𝐽 ∈ Comp → ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → 𝑚 ≠ ∅ ) )
179 fveq2 ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } → ( fi ‘ 𝑚 ) = ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) )
180 179 eleq2d ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } → ( ∅ ∈ ( fi ‘ 𝑚 ) ↔ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) ) )
181 180 notbid ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } → ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) ↔ ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) ) )
182 inteq ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } → 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } )
183 182 neeq1d ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } → ( 𝑚 ≠ ∅ ↔ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ≠ ∅ ) )
184 n0 ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ≠ ∅ ↔ ∃ 𝑦 𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } )
185 183 184 bitrdi ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } → ( 𝑚 ≠ ∅ ↔ ∃ 𝑦 𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) )
186 181 185 imbi12d ( 𝑚 = { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } → ( ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → 𝑚 ≠ ∅ ) ↔ ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) → ∃ 𝑦 𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) ) )
187 186 rspccv ( ∀ 𝑚 ∈ 𝒫 ( Clsd ‘ 𝐽 ) ( ¬ ∅ ∈ ( fi ‘ 𝑚 ) → 𝑚 ≠ ∅ ) → ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) → ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) → ∃ 𝑦 𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) ) )
188 178 187 syl ( 𝐽 ∈ Comp → ( { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ∈ 𝒫 ( Clsd ‘ 𝐽 ) → ( ¬ ∅ ∈ ( fi ‘ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) → ∃ 𝑦 𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) ) )
189 3 25 174 188 syl3c ( 𝜑 → ∃ 𝑦 𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } )
190 lmrel Rel ( ⇝𝑡𝐽 )
191 r19.23v ( ∀ 𝑢 ∈ ran ℤ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) ↔ ( ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) )
192 191 albii ( ∀ 𝑘𝑢 ∈ ran ℤ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) ↔ ∀ 𝑘 ( ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) )
193 fvex ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ∈ V
194 eleq2 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → ( 𝑦𝑘𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
195 193 194 ceqsalv ( ∀ 𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
196 195 ralbii ( ∀ 𝑢 ∈ ran ℤ𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) ↔ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
197 ralcom4 ( ∀ 𝑢 ∈ ran ℤ𝑘 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) ↔ ∀ 𝑘𝑢 ∈ ran ℤ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) )
198 196 197 bitr3i ( ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ∀ 𝑘𝑢 ∈ ran ℤ ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) )
199 vex 𝑦 ∈ V
200 199 elintab ( 𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ↔ ∀ 𝑘 ( ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦𝑘 ) )
201 192 198 200 3bitr4i ( ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ 𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } )
202 eqid ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) )
203 imaeq2 ( 𝑢 = ℕ → ( 𝐹𝑢 ) = ( 𝐹 “ ℕ ) )
204 203 fveq2d ( 𝑢 = ℕ → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) )
205 204 rspceeqv ( ( ℕ ∈ ran ℤ ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ) → ∃ 𝑢 ∈ ran ℤ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
206 134 202 205 mp2an 𝑢 ∈ ran ℤ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) )
207 fvex ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ V
208 eqeq1 ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) → ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
209 208 rexbidv ( 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) → ( ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ ∃ 𝑢 ∈ ran ℤ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) )
210 207 209 elab ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ↔ ∃ 𝑢 ∈ ran ℤ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
211 206 210 mpbir ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) }
212 intss1 ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ∈ { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } → { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) )
213 211 212 ax-mp { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) )
214 imassrn ( 𝐹 “ ℕ ) ⊆ ran 𝐹
215 214 14 sstrid ( 𝜑 → ( 𝐹 “ ℕ ) ⊆ 𝐽 )
216 16 clsss3 ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ℕ ) ⊆ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ 𝐽 )
217 9 215 216 syl2anc ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ 𝐽 )
218 217 13 sseqtrrd ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ℕ ) ) ⊆ 𝑋 )
219 213 218 sstrid ( 𝜑 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ⊆ 𝑋 )
220 219 sselda ( ( 𝜑𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) → 𝑦𝑋 )
221 201 220 sylan2b ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → 𝑦𝑋 )
222 1zzd ( 𝜑 → 1 ∈ ℤ )
223 130 7 222 iscau3 ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ) ) ) )
224 4 223 mpbid ( 𝜑 → ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ) ) )
225 224 simprd ( 𝜑 → ∀ 𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ) )
226 simp3 ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ) → ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 )
227 226 ralimi ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ) → ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 )
228 227 reximi ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 )
229 228 ralimi ( ∀ 𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ) → ∀ 𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 )
230 225 229 syl ( 𝜑 → ∀ 𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 )
231 230 adantr ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∀ 𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 )
232 rphalfcl ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ+ )
233 breq2 ( 𝑦 = ( 𝑟 / 2 ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ↔ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ) )
234 233 2ralbidv ( 𝑦 = ( 𝑟 / 2 ) → ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ↔ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ) )
235 234 rexbidv ( 𝑦 = ( 𝑟 / 2 ) → ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ) )
236 235 rspccva ( ( ∀ 𝑦 ∈ ℝ+𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < 𝑦 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) )
237 231 232 236 syl2an ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) )
238 5 ffund ( 𝜑 → Fun 𝐹 )
239 238 ad2antrr ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → Fun 𝐹 )
240 9 ad2antrr ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → 𝐽 ∈ Top )
241 imassrn ( 𝐹 “ ( ℤ𝑚 ) ) ⊆ ran 𝐹
242 241 14 sstrid ( 𝜑 → ( 𝐹 “ ( ℤ𝑚 ) ) ⊆ 𝐽 )
243 242 ad2antrr ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( 𝐹 “ ( ℤ𝑚 ) ) ⊆ 𝐽 )
244 nnz ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ )
245 fnfvelrn ( ( ℤ Fn ℤ ∧ 𝑚 ∈ ℤ ) → ( ℤ𝑚 ) ∈ ran ℤ )
246 58 244 245 sylancr ( 𝑚 ∈ ℕ → ( ℤ𝑚 ) ∈ ran ℤ )
247 246 ad2antll ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( ℤ𝑚 ) ∈ ran ℤ )
248 simplr ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) )
249 imaeq2 ( 𝑢 = ( ℤ𝑚 ) → ( 𝐹𝑢 ) = ( 𝐹 “ ( ℤ𝑚 ) ) )
250 249 fveq2d ( 𝑢 = ( ℤ𝑚 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ𝑚 ) ) ) )
251 250 eleq2d ( 𝑢 = ( ℤ𝑚 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ↔ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ𝑚 ) ) ) ) )
252 251 rspcv ( ( ℤ𝑚 ) ∈ ran ℤ → ( ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ𝑚 ) ) ) ) )
253 247 248 252 sylc ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ𝑚 ) ) ) )
254 7 ad2antrr ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
255 221 adantr ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → 𝑦𝑋 )
256 232 ad2antrl ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( 𝑟 / 2 ) ∈ ℝ+ )
257 256 rpxrd ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( 𝑟 / 2 ) ∈ ℝ* )
258 1 blopn ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 )
259 254 255 257 258 syl3anc ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽 )
260 blcntr ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦𝑋 ∧ ( 𝑟 / 2 ) ∈ ℝ+ ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
261 254 255 256 260 syl3anc ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → 𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
262 16 clsndisj ( ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ( ℤ𝑚 ) ) ⊆ 𝐽𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹 “ ( ℤ𝑚 ) ) ) ) ∧ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∈ 𝐽𝑦 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ≠ ∅ )
263 240 243 253 259 261 262 syl32anc ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ≠ ∅ )
264 n0 ( ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ≠ ∅ ↔ ∃ 𝑛 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) )
265 inss2 ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ⊆ ( 𝐹 “ ( ℤ𝑚 ) )
266 265 sseli ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) → 𝑛 ∈ ( 𝐹 “ ( ℤ𝑚 ) ) )
267 fvelima ( ( Fun 𝐹𝑛 ∈ ( 𝐹 “ ( ℤ𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) = 𝑛 )
268 266 267 sylan2 ( ( Fun 𝐹𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) = 𝑛 )
269 inss1 ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ⊆ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) )
270 269 sseli ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) → 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
271 270 adantl ( ( Fun 𝐹𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ) → 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
272 eleq1a ( 𝑛 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ( 𝐹𝑘 ) = 𝑛 → ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) )
273 271 272 syl ( ( Fun 𝐹𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ) → ( ( 𝐹𝑘 ) = 𝑛 → ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) )
274 273 reximdv ( ( Fun 𝐹𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ) → ( ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) = 𝑛 → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) )
275 268 274 mpd ( ( Fun 𝐹𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ) → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
276 275 ex ( Fun 𝐹 → ( 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) )
277 276 exlimdv ( Fun 𝐹 → ( ∃ 𝑛 𝑛 ∈ ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) )
278 264 277 syl5bi ( Fun 𝐹 → ( ( ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ∩ ( 𝐹 “ ( ℤ𝑚 ) ) ) ≠ ∅ → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) )
279 239 263 278 sylc ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
280 r19.29 ( ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ𝑚 ) ( ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) )
281 uznnssnn ( 𝑚 ∈ ℕ → ( ℤ𝑚 ) ⊆ ℕ )
282 281 ad2antll ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( ℤ𝑚 ) ⊆ ℕ )
283 simprlr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) )
284 7 ad3antrrr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
285 simplrl ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝑟 ∈ ℝ+ )
286 285 232 syl ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ+ )
287 286 rpxrd ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ* )
288 simpllr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝑦𝑋 )
289 5 ad3antrrr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝐹 : ℕ ⟶ 𝑋 )
290 eluznn ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑚 ) ) → 𝑘 ∈ ℕ )
291 290 ad2ant2lr ( ( ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ∧ ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → 𝑘 ∈ ℕ )
292 291 ad2ant2lr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝑘 ∈ ℕ )
293 289 292 ffvelrnd ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( 𝐹𝑘 ) ∈ 𝑋 )
294 elbl3 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑟 / 2 ) ∈ ℝ* ) ∧ ( 𝑦𝑋 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ) ) → ( ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) )
295 284 287 288 293 294 syl22anc ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ↔ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) )
296 283 295 mpbid ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) )
297 2 ad3antrrr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
298 simprr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝑛 ∈ ( ℤ𝑘 ) )
299 eluznn ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( ℤ𝑘 ) ) → 𝑛 ∈ ℕ )
300 292 298 299 syl2anc ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝑛 ∈ ℕ )
301 289 300 ffvelrnd ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( 𝐹𝑛 ) ∈ 𝑋 )
302 metcl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( 𝐹𝑛 ) ∈ 𝑋 ) → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) ∈ ℝ )
303 297 293 301 302 syl3anc ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) ∈ ℝ )
304 metcl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹𝑘 ) ∈ 𝑋𝑦𝑋 ) → ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ∈ ℝ )
305 297 293 288 304 syl3anc ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ∈ ℝ )
306 286 rpred ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( 𝑟 / 2 ) ∈ ℝ )
307 lt2add ( ( ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) ∈ ℝ ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ∈ ℝ ) ∧ ( ( 𝑟 / 2 ) ∈ ℝ ∧ ( 𝑟 / 2 ) ∈ ℝ ) ) → ( ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) )
308 303 305 306 306 307 syl22anc ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < ( 𝑟 / 2 ) ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) )
309 296 308 mpan2d ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ) )
310 285 rpcnd ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝑟 ∈ ℂ )
311 310 2halvesd ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) = 𝑟 )
312 311 breq2d ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < ( ( 𝑟 / 2 ) + ( 𝑟 / 2 ) ) ↔ ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) )
313 309 312 sylibd ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) )
314 mettri2 ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( 𝐹𝑛 ) ∈ 𝑋𝑦𝑋 ) ) → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) )
315 297 293 301 288 314 syl13anc ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) )
316 metcl ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐹𝑛 ) ∈ 𝑋𝑦𝑋 ) → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) ∈ ℝ )
317 297 301 288 316 syl3anc ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) ∈ ℝ )
318 303 305 readdcld ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) ∈ ℝ )
319 285 rpred ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → 𝑟 ∈ ℝ )
320 lelttr ( ( ( ( 𝐹𝑛 ) 𝐷 𝑦 ) ∈ ℝ ∧ ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( ( 𝐹𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) ∧ ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
321 317 318 319 320 syl3anc ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( ( ( 𝐹𝑛 ) 𝐷 𝑦 ) ≤ ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) ∧ ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < 𝑟 ) → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
322 315 321 mpand ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) + ( ( 𝐹𝑘 ) 𝐷 𝑦 ) ) < 𝑟 → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
323 313 322 syld ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
324 323 anassrs ( ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) ∧ 𝑛 ∈ ( ℤ𝑘 ) ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
325 324 ralimdva ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ ( 𝑘 ∈ ( ℤ𝑚 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) ) → ( ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
326 325 expr ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ𝑚 ) ) → ( ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ( ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) )
327 326 com23 ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ𝑚 ) ) → ( ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ( ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) → ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) )
328 327 impd ( ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) ∧ 𝑘 ∈ ( ℤ𝑚 ) ) → ( ( ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
329 328 reximdva ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ𝑚 ) ( ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
330 ssrexv ( ( ℤ𝑚 ) ⊆ ℕ → ( ∃ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
331 282 329 330 sylsyld ( ( ( 𝜑𝑦𝑋 ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ𝑚 ) ( ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
332 221 331 syldanl ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( ∃ 𝑘 ∈ ( ℤ𝑚 ) ( ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
333 280 332 syl5 ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) ∧ ∃ 𝑘 ∈ ( ℤ𝑚 ) ( 𝐹𝑘 ) ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 𝑟 / 2 ) ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
334 279 333 mpan2d ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ ( 𝑟 ∈ ℝ+𝑚 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
335 334 anassrs ( ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
336 335 rexlimdva ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑚 ) ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑛 ) ) < ( 𝑟 / 2 ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) )
337 237 336 mpd ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 )
338 337 ralrimiva ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ∀ 𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 )
339 eqidd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) = ( 𝐹𝑛 ) )
340 1 7 130 222 339 5 lmmbrf ( 𝜑 → ( 𝐹 ( ⇝𝑡𝐽 ) 𝑦 ↔ ( 𝑦𝑋 ∧ ∀ 𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) )
341 340 adantr ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → ( 𝐹 ( ⇝𝑡𝐽 ) 𝑦 ↔ ( 𝑦𝑋 ∧ ∀ 𝑟 ∈ ℝ+𝑘 ∈ ℕ ∀ 𝑛 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑛 ) 𝐷 𝑦 ) < 𝑟 ) ) )
342 221 338 341 mpbir2and ( ( 𝜑 ∧ ∀ 𝑢 ∈ ran ℤ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) ) → 𝐹 ( ⇝𝑡𝐽 ) 𝑦 )
343 201 342 sylan2br ( ( 𝜑𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) → 𝐹 ( ⇝𝑡𝐽 ) 𝑦 )
344 releldm ( ( Rel ( ⇝𝑡𝐽 ) ∧ 𝐹 ( ⇝𝑡𝐽 ) 𝑦 ) → 𝐹 ∈ dom ( ⇝𝑡𝐽 ) )
345 190 343 344 sylancr ( ( 𝜑𝑦 { 𝑘 ∣ ∃ 𝑢 ∈ ran ℤ 𝑘 = ( ( cls ‘ 𝐽 ) ‘ ( 𝐹𝑢 ) ) } ) → 𝐹 ∈ dom ( ⇝𝑡𝐽 ) )
346 189 345 exlimddv ( 𝜑𝐹 ∈ dom ( ⇝𝑡𝐽 ) )