Metamath Proof Explorer


Theorem nn0ennn

Description: The nonnegative integers are equinumerous to the positive integers. (Contributed by NM, 19-Jul-2004)

Ref Expression
Assertion nn0ennn 0

Proof

Step Hyp Ref Expression
1 nn0ex 0V
2 nnex V
3 nn0p1nn x0x+1
4 nnm1nn0 yy10
5 nncn yy
6 nn0cn x0x
7 ax-1cn 1
8 subadd y1xy1=x1+x=y
9 7 8 mp3an2 yxy1=x1+x=y
10 eqcom x=y1y1=x
11 eqcom y=1+x1+x=y
12 9 10 11 3bitr4g yxx=y1y=1+x
13 addcom 1x1+x=x+1
14 7 13 mpan x1+x=x+1
15 14 eqeq2d xy=1+xy=x+1
16 15 adantl yxy=1+xy=x+1
17 12 16 bitrd yxx=y1y=x+1
18 5 6 17 syl2anr x0yx=y1y=x+1
19 1 2 3 4 18 en3i 0