Metamath Proof Explorer


Theorem hlimreui

Description: The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlimreui ( ∃ 𝑥𝐻 𝐹𝑣 𝑥 ↔ ∃! 𝑥𝐻 𝐹𝑣 𝑥 )

Proof

Step Hyp Ref Expression
1 hlimuni ( ( 𝐹𝑣 𝑥𝐹𝑣 𝑦 ) → 𝑥 = 𝑦 )
2 1 rgen2w 𝑥𝐻𝑦𝐻 ( ( 𝐹𝑣 𝑥𝐹𝑣 𝑦 ) → 𝑥 = 𝑦 )
3 2 biantru ( ∃ 𝑥𝐻 𝐹𝑣 𝑥 ↔ ( ∃ 𝑥𝐻 𝐹𝑣 𝑥 ∧ ∀ 𝑥𝐻𝑦𝐻 ( ( 𝐹𝑣 𝑥𝐹𝑣 𝑦 ) → 𝑥 = 𝑦 ) ) )
4 breq2 ( 𝑥 = 𝑦 → ( 𝐹𝑣 𝑥𝐹𝑣 𝑦 ) )
5 4 reu4 ( ∃! 𝑥𝐻 𝐹𝑣 𝑥 ↔ ( ∃ 𝑥𝐻 𝐹𝑣 𝑥 ∧ ∀ 𝑥𝐻𝑦𝐻 ( ( 𝐹𝑣 𝑥𝐹𝑣 𝑦 ) → 𝑥 = 𝑦 ) ) )
6 3 5 bitr4i ( ∃ 𝑥𝐻 𝐹𝑣 𝑥 ↔ ∃! 𝑥𝐻 𝐹𝑣 𝑥 )