Metamath Proof Explorer


Theorem hmeoclda

Description: Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009) (Revised by Mario Carneiro, 3-Jun-2014)

Ref Expression
Assertion hmeoclda ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹𝑆 ) ∈ ( Clsd ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 hmeocnvcn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )
2 1 3ad2ant3 ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → 𝐹 ∈ ( 𝐾 Cn 𝐽 ) )
3 imacnvcnv ( 𝐹𝑆 ) = ( 𝐹𝑆 )
4 cnclima ( ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹𝑆 ) ∈ ( Clsd ‘ 𝐾 ) )
5 3 4 eqeltrrid ( ( 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹𝑆 ) ∈ ( Clsd ‘ 𝐾 ) )
6 2 5 sylan ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐹𝑆 ) ∈ ( Clsd ‘ 𝐾 ) )