Step |
Hyp |
Ref |
Expression |
1 |
|
hstr.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
hstr.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
hstri |
⊢ ( ∀ 𝑓 ∈ CHStates ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) ) = 1 → ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) ) = 1 ) → 𝐴 ⊆ 𝐵 ) |
4 |
|
hstles |
⊢ ( ( ( 𝑓 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) ) = 1 → ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) ) = 1 ) ) |
5 |
2 4
|
mpanr1 |
⊢ ( ( ( 𝑓 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) ) = 1 → ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) ) = 1 ) ) |
6 |
1 5
|
mpanl2 |
⊢ ( ( 𝑓 ∈ CHStates ∧ 𝐴 ⊆ 𝐵 ) → ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) ) = 1 → ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) ) = 1 ) ) |
7 |
6
|
expcom |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑓 ∈ CHStates → ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) ) = 1 → ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) ) = 1 ) ) ) |
8 |
7
|
ralrimiv |
⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑓 ∈ CHStates ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) ) = 1 → ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) ) = 1 ) ) |
9 |
3 8
|
impbii |
⊢ ( ∀ 𝑓 ∈ CHStates ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) ) = 1 → ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) ) = 1 ) ↔ 𝐴 ⊆ 𝐵 ) |