| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstr.1 | ⊢ 𝐴  ∈   Cℋ | 
						
							| 2 |  | hstr.2 | ⊢ 𝐵  ∈   Cℋ | 
						
							| 3 | 1 2 | hstri | ⊢ ( ∀ 𝑓  ∈  CHStates ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 )  →  𝐴  ⊆  𝐵 ) | 
						
							| 4 |  | hstles | ⊢ ( ( ( 𝑓  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 5 | 2 4 | mpanr1 | ⊢ ( ( ( 𝑓  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐴  ⊆  𝐵 )  →  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 6 | 1 5 | mpanl2 | ⊢ ( ( 𝑓  ∈  CHStates  ∧  𝐴  ⊆  𝐵 )  →  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 7 | 6 | expcom | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝑓  ∈  CHStates  →  ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) ) | 
						
							| 8 | 7 | ralrimiv | ⊢ ( 𝐴  ⊆  𝐵  →  ∀ 𝑓  ∈  CHStates ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 9 | 3 8 | impbii | ⊢ ( ∀ 𝑓  ∈  CHStates ( ( normℎ ‘ ( 𝑓 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑓 ‘ 𝐵 ) )  =  1 )  ↔  𝐴  ⊆  𝐵 ) |