| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 ) | 
						
							| 2 |  | hstle | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 4 | 1 3 | eqbrtrrd | ⊢ ( ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  1  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 5 | 4 | ex | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  1  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) | 
						
							| 6 |  | hstle1 | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ≤  1 ) | 
						
							| 7 | 6 | ad2ant2r | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ≤  1 ) | 
						
							| 8 | 5 7 | jctild | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ≤  1  ∧  1  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) ) | 
						
							| 9 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( 𝑆 ‘ 𝐵 )  ∈   ℋ ) | 
						
							| 10 |  | normcl | ⊢ ( ( 𝑆 ‘ 𝐵 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 11 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 12 |  | letri3 | ⊢ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  1  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ≤  1  ∧  1  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) ) | 
						
							| 13 | 11 12 | mpan2 | ⊢ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  1  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ≤  1  ∧  1  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) ) | 
						
							| 14 | 9 10 13 | 3syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  1  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ≤  1  ∧  1  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) ) | 
						
							| 15 | 14 | ad2ant2r | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  1  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ≤  1  ∧  1  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) ) | 
						
							| 16 | 8 15 | sylibrd | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  =  1 ) ) |