| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |
| 2 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 3 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) |
| 4 |
2 3
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) |
| 5 |
|
his7 |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑆 ‘ 𝐴 ) ∈ ℋ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) → ( ( 𝑆 ‘ 𝐴 ) ·ih ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ 𝐴 ) ) + ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 6 |
1 1 4 5
|
syl3anc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) ·ih ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ 𝐴 ) ) + ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 7 |
|
normsq |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ 𝐴 ) ) ) |
| 8 |
1 7
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ 𝐴 ) ) ) |
| 9 |
8
|
eqcomd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ 𝐴 ) ) = ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 10 |
|
ococ |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) |
| 11 |
|
eqimss2 |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝐴 ∈ Cℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 13 |
2 12
|
jca |
⊢ ( 𝐴 ∈ Cℋ → ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 15 |
|
hstorth |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) → ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 ) |
| 16 |
14 15
|
mpdan |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 ) |
| 17 |
9 16
|
oveq12d |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ 𝐴 ) ) + ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 0 ) ) |
| 18 |
|
normcl |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
| 19 |
1 18
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
| 20 |
19
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ ) |
| 22 |
21
|
addridd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 0 ) = ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 23 |
6 17 22
|
3eqtrrd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑆 ‘ 𝐴 ) ·ih ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 24 |
|
hstoc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) ) |
| 25 |
24
|
oveq2d |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) ·ih ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) ) |
| 26 |
23 25
|
eqtrd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) ) |
| 27 |
|
id |
⊢ ( ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 → ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) |
| 28 |
26 27
|
sylan9eq |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = 0 ) |
| 29 |
28
|
3impa |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ∧ ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = 0 ) |
| 30 |
19
|
recnd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℂ ) |
| 31 |
|
sqeq0 |
⊢ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℂ → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ) ) |
| 33 |
32
|
3adant3 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ∧ ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ) ) |
| 34 |
29 33
|
mpbid |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ∧ ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ) |
| 35 |
|
hst0h |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ↔ ( 𝑆 ‘ 𝐴 ) = 0ℎ ) ) |
| 36 |
35
|
3adant3 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ∧ ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ↔ ( 𝑆 ‘ 𝐴 ) = 0ℎ ) ) |
| 37 |
34 36
|
mpbid |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ∧ ( ( 𝑆 ‘ 𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( 𝑆 ‘ 𝐴 ) = 0ℎ ) |