Metamath Proof Explorer


Theorem hstoh

Description: A Hilbert-space-valued state orthogonal to the state of the lattice unit is zero. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstoh ( ( 𝑆 ∈ CHStates ∧ 𝐴C ∧ ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( 𝑆𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 hstcl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( 𝑆𝐴 ) ∈ ℋ )
2 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
3 hstcl ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐴 ) ∈ C ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ )
4 2 3 sylan2 ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ )
5 his7 ( ( ( 𝑆𝐴 ) ∈ ℋ ∧ ( 𝑆𝐴 ) ∈ ℋ ∧ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) → ( ( 𝑆𝐴 ) ·ih ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ( ( 𝑆𝐴 ) ·ih ( 𝑆𝐴 ) ) + ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) )
6 1 1 4 5 syl3anc ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( 𝑆𝐴 ) ·ih ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ( ( 𝑆𝐴 ) ·ih ( 𝑆𝐴 ) ) + ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) )
7 normsq ( ( 𝑆𝐴 ) ∈ ℋ → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = ( ( 𝑆𝐴 ) ·ih ( 𝑆𝐴 ) ) )
8 1 7 syl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = ( ( 𝑆𝐴 ) ·ih ( 𝑆𝐴 ) ) )
9 8 eqcomd ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( 𝑆𝐴 ) ·ih ( 𝑆𝐴 ) ) = ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) )
10 ococ ( 𝐴C → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 )
11 eqimss2 ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
12 10 11 syl ( 𝐴C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) )
13 2 12 jca ( 𝐴C → ( ( ⊥ ‘ 𝐴 ) ∈ C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )
14 13 adantl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ⊥ ‘ 𝐴 ) ∈ C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) )
15 hstorth ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( ( ⊥ ‘ 𝐴 ) ∈ C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) → ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 )
16 14 15 mpdan ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 )
17 9 16 oveq12d ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ( 𝑆𝐴 ) ·ih ( 𝑆𝐴 ) ) + ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 0 ) )
18 normcl ( ( 𝑆𝐴 ) ∈ ℋ → ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ )
19 1 18 syl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ )
20 19 resqcld ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ∈ ℝ )
21 20 recnd ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ∈ ℂ )
22 21 addid1d ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 0 ) = ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) )
23 6 17 22 3eqtrrd ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = ( ( 𝑆𝐴 ) ·ih ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) )
24 hstoc ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) )
25 24 oveq2d ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( 𝑆𝐴 ) ·ih ( ( 𝑆𝐴 ) + ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) )
26 23 25 eqtrd ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) )
27 id ( ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 → ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 )
28 26 27 sylan9eq ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = 0 )
29 28 3impa ( ( 𝑆 ∈ CHStates ∧ 𝐴C ∧ ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = 0 )
30 19 recnd ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℂ )
31 sqeq0 ( ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℂ → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = 0 ↔ ( norm ‘ ( 𝑆𝐴 ) ) = 0 ) )
32 30 31 syl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = 0 ↔ ( norm ‘ ( 𝑆𝐴 ) ) = 0 ) )
33 32 3adant3 ( ( 𝑆 ∈ CHStates ∧ 𝐴C ∧ ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) = 0 ↔ ( norm ‘ ( 𝑆𝐴 ) ) = 0 ) )
34 29 33 mpbid ( ( 𝑆 ∈ CHStates ∧ 𝐴C ∧ ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( norm ‘ ( 𝑆𝐴 ) ) = 0 )
35 hst0h ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) = 0 ↔ ( 𝑆𝐴 ) = 0 ) )
36 35 3adant3 ( ( 𝑆 ∈ CHStates ∧ 𝐴C ∧ ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( ( norm ‘ ( 𝑆𝐴 ) ) = 0 ↔ ( 𝑆𝐴 ) = 0 ) )
37 34 36 mpbid ( ( 𝑆 ∈ CHStates ∧ 𝐴C ∧ ( ( 𝑆𝐴 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( 𝑆𝐴 ) = 0 )