Step |
Hyp |
Ref |
Expression |
1 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
2 |
|
helch |
⊢ ℋ ∈ Cℋ |
3 |
2
|
choccli |
⊢ ( ⊥ ‘ ℋ ) ∈ Cℋ |
4 |
3
|
ch0lei |
⊢ 0ℋ ⊆ ( ⊥ ‘ ℋ ) |
5 |
|
hstorth |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 0ℋ ∈ Cℋ ) ∧ ( ℋ ∈ Cℋ ∧ 0ℋ ⊆ ( ⊥ ‘ ℋ ) ) ) → ( ( 𝑆 ‘ 0ℋ ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) |
6 |
2 4 5
|
mpanr12 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 0ℋ ∈ Cℋ ) → ( ( 𝑆 ‘ 0ℋ ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) |
7 |
1 6
|
mpan2 |
⊢ ( 𝑆 ∈ CHStates → ( ( 𝑆 ‘ 0ℋ ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) |
8 |
|
hstoh |
⊢ ( ( 𝑆 ∈ CHStates ∧ 0ℋ ∈ Cℋ ∧ ( ( 𝑆 ‘ 0ℋ ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( 𝑆 ‘ 0ℋ ) = 0ℎ ) |
9 |
1 8
|
mp3an2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( ( 𝑆 ‘ 0ℋ ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( 𝑆 ‘ 0ℋ ) = 0ℎ ) |
10 |
7 9
|
mpdan |
⊢ ( 𝑆 ∈ CHStates → ( 𝑆 ‘ 0ℋ ) = 0ℎ ) |