Metamath Proof Explorer


Theorem hst0

Description: A Hilbert-space-valued state is zero at the zero subspace. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hst0 ( 𝑆 ∈ CHStates → ( 𝑆 ‘ 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 h0elch 0C
2 helch ℋ ∈ C
3 2 choccli ( ⊥ ‘ ℋ ) ∈ C
4 3 ch0lei 0 ⊆ ( ⊥ ‘ ℋ )
5 hstorth ( ( ( 𝑆 ∈ CHStates ∧ 0C ) ∧ ( ℋ ∈ C ∧ 0 ⊆ ( ⊥ ‘ ℋ ) ) ) → ( ( 𝑆 ‘ 0 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 )
6 2 4 5 mpanr12 ( ( 𝑆 ∈ CHStates ∧ 0C ) → ( ( 𝑆 ‘ 0 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 )
7 1 6 mpan2 ( 𝑆 ∈ CHStates → ( ( 𝑆 ‘ 0 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 )
8 hstoh ( ( 𝑆 ∈ CHStates ∧ 0C ∧ ( ( 𝑆 ‘ 0 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( 𝑆 ‘ 0 ) = 0 )
9 1 8 mp3an2 ( ( 𝑆 ∈ CHStates ∧ ( ( 𝑆 ‘ 0 ) ·ih ( 𝑆 ‘ ℋ ) ) = 0 ) → ( 𝑆 ‘ 0 ) = 0 )
10 7 9 mpdan ( 𝑆 ∈ CHStates → ( 𝑆 ‘ 0 ) = 0 )