Step |
Hyp |
Ref |
Expression |
1 |
|
h0elch |
|- 0H e. CH |
2 |
|
helch |
|- ~H e. CH |
3 |
2
|
choccli |
|- ( _|_ ` ~H ) e. CH |
4 |
3
|
ch0lei |
|- 0H C_ ( _|_ ` ~H ) |
5 |
|
hstorth |
|- ( ( ( S e. CHStates /\ 0H e. CH ) /\ ( ~H e. CH /\ 0H C_ ( _|_ ` ~H ) ) ) -> ( ( S ` 0H ) .ih ( S ` ~H ) ) = 0 ) |
6 |
2 4 5
|
mpanr12 |
|- ( ( S e. CHStates /\ 0H e. CH ) -> ( ( S ` 0H ) .ih ( S ` ~H ) ) = 0 ) |
7 |
1 6
|
mpan2 |
|- ( S e. CHStates -> ( ( S ` 0H ) .ih ( S ` ~H ) ) = 0 ) |
8 |
|
hstoh |
|- ( ( S e. CHStates /\ 0H e. CH /\ ( ( S ` 0H ) .ih ( S ` ~H ) ) = 0 ) -> ( S ` 0H ) = 0h ) |
9 |
1 8
|
mp3an2 |
|- ( ( S e. CHStates /\ ( ( S ` 0H ) .ih ( S ` ~H ) ) = 0 ) -> ( S ` 0H ) = 0h ) |
10 |
7 9
|
mpdan |
|- ( S e. CHStates -> ( S ` 0H ) = 0h ) |