Step |
Hyp |
Ref |
Expression |
1 |
|
hstcl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H ) |
2 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
3 |
|
hstcl |
|- ( ( S e. CHStates /\ ( _|_ ` A ) e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) |
4 |
2 3
|
sylan2 |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) |
5 |
|
his7 |
|- ( ( ( S ` A ) e. ~H /\ ( S ` A ) e. ~H /\ ( S ` ( _|_ ` A ) ) e. ~H ) -> ( ( S ` A ) .ih ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) = ( ( ( S ` A ) .ih ( S ` A ) ) + ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) ) ) |
6 |
1 1 4 5
|
syl3anc |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) .ih ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) = ( ( ( S ` A ) .ih ( S ` A ) ) + ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) ) ) |
7 |
|
normsq |
|- ( ( S ` A ) e. ~H -> ( ( normh ` ( S ` A ) ) ^ 2 ) = ( ( S ` A ) .ih ( S ` A ) ) ) |
8 |
1 7
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) ^ 2 ) = ( ( S ` A ) .ih ( S ` A ) ) ) |
9 |
8
|
eqcomd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) .ih ( S ` A ) ) = ( ( normh ` ( S ` A ) ) ^ 2 ) ) |
10 |
|
ococ |
|- ( A e. CH -> ( _|_ ` ( _|_ ` A ) ) = A ) |
11 |
|
eqimss2 |
|- ( ( _|_ ` ( _|_ ` A ) ) = A -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
12 |
10 11
|
syl |
|- ( A e. CH -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
13 |
2 12
|
jca |
|- ( A e. CH -> ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
14 |
13
|
adantl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
15 |
|
hstorth |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( ( _|_ ` A ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) -> ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) = 0 ) |
16 |
14 15
|
mpdan |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) = 0 ) |
17 |
9 16
|
oveq12d |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( S ` A ) .ih ( S ` A ) ) + ( ( S ` A ) .ih ( S ` ( _|_ ` A ) ) ) ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + 0 ) ) |
18 |
|
normcl |
|- ( ( S ` A ) e. ~H -> ( normh ` ( S ` A ) ) e. RR ) |
19 |
1 18
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` A ) ) e. RR ) |
20 |
19
|
resqcld |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) ^ 2 ) e. RR ) |
21 |
20
|
recnd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) ^ 2 ) e. CC ) |
22 |
21
|
addid1d |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) + 0 ) = ( ( normh ` ( S ` A ) ) ^ 2 ) ) |
23 |
6 17 22
|
3eqtrrd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) ^ 2 ) = ( ( S ` A ) .ih ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) ) |
24 |
|
hstoc |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) |
25 |
24
|
oveq2d |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) .ih ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) ) = ( ( S ` A ) .ih ( S ` ~H ) ) ) |
26 |
23 25
|
eqtrd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) ^ 2 ) = ( ( S ` A ) .ih ( S ` ~H ) ) ) |
27 |
|
id |
|- ( ( ( S ` A ) .ih ( S ` ~H ) ) = 0 -> ( ( S ` A ) .ih ( S ` ~H ) ) = 0 ) |
28 |
26 27
|
sylan9eq |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( ( S ` A ) .ih ( S ` ~H ) ) = 0 ) -> ( ( normh ` ( S ` A ) ) ^ 2 ) = 0 ) |
29 |
28
|
3impa |
|- ( ( S e. CHStates /\ A e. CH /\ ( ( S ` A ) .ih ( S ` ~H ) ) = 0 ) -> ( ( normh ` ( S ` A ) ) ^ 2 ) = 0 ) |
30 |
19
|
recnd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` A ) ) e. CC ) |
31 |
|
sqeq0 |
|- ( ( normh ` ( S ` A ) ) e. CC -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` A ) ) = 0 ) ) |
32 |
30 31
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` A ) ) = 0 ) ) |
33 |
32
|
3adant3 |
|- ( ( S e. CHStates /\ A e. CH /\ ( ( S ` A ) .ih ( S ` ~H ) ) = 0 ) -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` A ) ) = 0 ) ) |
34 |
29 33
|
mpbid |
|- ( ( S e. CHStates /\ A e. CH /\ ( ( S ` A ) .ih ( S ` ~H ) ) = 0 ) -> ( normh ` ( S ` A ) ) = 0 ) |
35 |
|
hst0h |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 0 <-> ( S ` A ) = 0h ) ) |
36 |
35
|
3adant3 |
|- ( ( S e. CHStates /\ A e. CH /\ ( ( S ` A ) .ih ( S ` ~H ) ) = 0 ) -> ( ( normh ` ( S ` A ) ) = 0 <-> ( S ` A ) = 0h ) ) |
37 |
34 36
|
mpbid |
|- ( ( S e. CHStates /\ A e. CH /\ ( ( S ` A ) .ih ( S ` ~H ) ) = 0 ) -> ( S ` A ) = 0h ) |