Metamath Proof Explorer


Theorem hstoh

Description: A Hilbert-space-valued state orthogonal to the state of the lattice unit is zero. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstoh S CHStates A C S A ih S = 0 S A = 0

Proof

Step Hyp Ref Expression
1 hstcl S CHStates A C S A
2 choccl A C A C
3 hstcl S CHStates A C S A
4 2 3 sylan2 S CHStates A C S A
5 his7 S A S A S A S A ih S A + S A = S A ih S A + S A ih S A
6 1 1 4 5 syl3anc S CHStates A C S A ih S A + S A = S A ih S A + S A ih S A
7 normsq S A norm S A 2 = S A ih S A
8 1 7 syl S CHStates A C norm S A 2 = S A ih S A
9 8 eqcomd S CHStates A C S A ih S A = norm S A 2
10 ococ A C A = A
11 eqimss2 A = A A A
12 10 11 syl A C A A
13 2 12 jca A C A C A A
14 13 adantl S CHStates A C A C A A
15 hstorth S CHStates A C A C A A S A ih S A = 0
16 14 15 mpdan S CHStates A C S A ih S A = 0
17 9 16 oveq12d S CHStates A C S A ih S A + S A ih S A = norm S A 2 + 0
18 normcl S A norm S A
19 1 18 syl S CHStates A C norm S A
20 19 resqcld S CHStates A C norm S A 2
21 20 recnd S CHStates A C norm S A 2
22 21 addid1d S CHStates A C norm S A 2 + 0 = norm S A 2
23 6 17 22 3eqtrrd S CHStates A C norm S A 2 = S A ih S A + S A
24 hstoc S CHStates A C S A + S A = S
25 24 oveq2d S CHStates A C S A ih S A + S A = S A ih S
26 23 25 eqtrd S CHStates A C norm S A 2 = S A ih S
27 id S A ih S = 0 S A ih S = 0
28 26 27 sylan9eq S CHStates A C S A ih S = 0 norm S A 2 = 0
29 28 3impa S CHStates A C S A ih S = 0 norm S A 2 = 0
30 19 recnd S CHStates A C norm S A
31 sqeq0 norm S A norm S A 2 = 0 norm S A = 0
32 30 31 syl S CHStates A C norm S A 2 = 0 norm S A = 0
33 32 3adant3 S CHStates A C S A ih S = 0 norm S A 2 = 0 norm S A = 0
34 29 33 mpbid S CHStates A C S A ih S = 0 norm S A = 0
35 hst0h S CHStates A C norm S A = 0 S A = 0
36 35 3adant3 S CHStates A C S A ih S = 0 norm S A = 0 S A = 0
37 34 36 mpbid S CHStates A C S A ih S = 0 S A = 0