| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 2 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) |
| 4 |
|
normcl |
⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 6 |
5
|
sqge0d |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 0 ≤ ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) |
| 7 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |
| 8 |
|
normcl |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
| 10 |
9
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
| 11 |
5
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 12 |
10 11
|
addge01d |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 0 ≤ ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) ) |
| 13 |
6 12
|
mpbid |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) |
| 14 |
|
hstnmoc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = 1 ) |
| 15 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 16 |
14 15
|
eqtr4di |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = ( 1 ↑ 2 ) ) |
| 17 |
13 16
|
breqtrd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 18 |
|
normge0 |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 19 |
7 18
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 20 |
|
1re |
⊢ 1 ∈ ℝ |
| 21 |
|
0le1 |
⊢ 0 ≤ 1 |
| 22 |
|
le2sq |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ 1 ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) |
| 23 |
20 21 22
|
mpanr12 |
⊢ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ 1 ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) |
| 24 |
9 19 23
|
syl2anc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ 1 ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) ) |
| 25 |
17 24
|
mpbird |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ 1 ) |