| Step | Hyp | Ref | Expression | 
						
							| 1 |  | choccl | ⊢ ( 𝐴  ∈   Cℋ   →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  ) | 
						
							| 2 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ ) | 
						
							| 4 |  | normcl | ⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 6 | 5 | sqge0d | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  0  ≤  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) | 
						
							| 7 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( 𝑆 ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 8 |  | normcl | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 10 | 9 | resqcld | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 11 | 5 | resqcld | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 12 | 10 11 | addge01d | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( 0  ≤  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) ) | 
						
							| 13 | 6 12 | mpbid | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) | 
						
							| 14 |  | hstnmoc | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  =  1 ) | 
						
							| 15 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 16 | 14 15 | eqtr4di | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  =  ( 1 ↑ 2 ) ) | 
						
							| 17 | 13 16 | breqtrd | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 18 |  | normge0 | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 19 | 7 18 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 20 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 21 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 22 |  | le2sq | ⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) )  ∧  ( 1  ∈  ℝ  ∧  0  ≤  1 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  1  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) ) | 
						
							| 23 | 20 21 22 | mpanr12 | ⊢ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  1  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) ) | 
						
							| 24 | 9 19 23 | syl2anc | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  1  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) ) | 
						
							| 25 | 17 24 | mpbird | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  1 ) |