Metamath Proof Explorer


Theorem hstle1

Description: The norm of the value of a Hilbert-space-valued state is less than or equal to one. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstle1 ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( norm ‘ ( 𝑆𝐴 ) ) ≤ 1 )

Proof

Step Hyp Ref Expression
1 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
2 hstcl ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐴 ) ∈ C ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ )
3 1 2 sylan2 ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ )
4 normcl ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ → ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ∈ ℝ )
5 3 4 syl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ∈ ℝ )
6 5 sqge0d ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → 0 ≤ ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )
7 hstcl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( 𝑆𝐴 ) ∈ ℋ )
8 normcl ( ( 𝑆𝐴 ) ∈ ℋ → ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ )
9 7 8 syl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ )
10 9 resqcld ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ∈ ℝ )
11 5 resqcld ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ∈ ℝ )
12 10 11 addge01d ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( 0 ≤ ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ↔ ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) )
13 6 12 mpbid ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) )
14 hstnmoc ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = 1 )
15 sq1 ( 1 ↑ 2 ) = 1
16 14 15 eqtr4di ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = ( 1 ↑ 2 ) )
17 13 16 breqtrd ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) )
18 normge0 ( ( 𝑆𝐴 ) ∈ ℋ → 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) )
19 7 18 syl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) )
20 1re 1 ∈ ℝ
21 0le1 0 ≤ 1
22 le2sq ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ≤ 1 ↔ ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) )
23 20 21 22 mpanr12 ( ( ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ≤ 1 ↔ ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) )
24 9 19 23 syl2anc ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ≤ 1 ↔ ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) )
25 17 24 mpbird ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( norm ‘ ( 𝑆𝐴 ) ) ≤ 1 )