| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |
| 2 |
|
ax-hvaddid |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → ( ( 𝑆 ‘ 𝐴 ) +ℎ 0ℎ ) = ( 𝑆 ‘ 𝐴 ) ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ 0ℎ ) = ( 𝑆 ‘ 𝐴 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ 0ℎ ) = ( 𝑆 ‘ 𝐴 ) ) |
| 5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 6 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 7 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) |
| 8 |
6 7
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ ) |
| 9 |
|
normcl |
⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 11 |
10
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 13 |
|
pncan2 |
⊢ ( ( 1 ∈ ℂ ∧ ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ∈ ℂ ) → ( ( 1 + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) − 1 ) = ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) |
| 14 |
5 12 13
|
sylancr |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 1 + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) − 1 ) = ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( ( 1 + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) − 1 ) = ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) |
| 16 |
|
oveq1 |
⊢ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 17 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 18 |
16 17
|
eqtr2di |
⊢ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 → 1 = ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 → ( 1 + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) |
| 20 |
|
hstnmoc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = 1 ) |
| 21 |
19 20
|
sylan9eqr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( 1 + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) = 1 ) |
| 22 |
21
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( ( 1 + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) − 1 ) = ( 1 − 1 ) ) |
| 23 |
15 22
|
eqtr3d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) = ( 1 − 1 ) ) |
| 24 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 25 |
23 24
|
eqtrdi |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) = 0 ) |
| 26 |
25
|
ex |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) = 0 ) ) |
| 27 |
10
|
recnd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 28 |
|
sqeq0 |
⊢ ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ∈ ℂ → ( ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) = 0 ↔ ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 ) ) |
| 30 |
|
norm-i |
⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ∈ ℋ → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 ↔ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) = 0ℎ ) ) |
| 31 |
8 30
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0 ↔ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) = 0ℎ ) ) |
| 32 |
29 31
|
bitrd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) = 0 ↔ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) = 0ℎ ) ) |
| 33 |
26 32
|
sylibd |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) = 0ℎ ) ) |
| 34 |
33
|
imp |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) = 0ℎ ) |
| 35 |
34
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( ( 𝑆 ‘ 𝐴 ) +ℎ 0ℎ ) ) |
| 36 |
|
hstoc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝑆 ‘ ℋ ) ) |
| 38 |
35 37
|
eqtr3d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( ( 𝑆 ‘ 𝐴 ) +ℎ 0ℎ ) = ( 𝑆 ‘ ℋ ) ) |
| 39 |
4 38
|
eqtr3d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) → ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ ℋ ) ) |
| 40 |
|
fveq2 |
⊢ ( ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ ℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) ) |
| 41 |
|
hst1a |
⊢ ( 𝑆 ∈ CHStates → ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ℋ ) ) = 1 ) |
| 43 |
40 42
|
sylan9eqr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ ℋ ) ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ) |
| 44 |
39 43
|
impbida |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 1 ↔ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ ℋ ) ) ) |