| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( 𝑆 ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 2 |  | ax-hvaddid | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈   ℋ  →  ( ( 𝑆 ‘ 𝐴 )  +ℎ  0ℎ )  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( 𝑆 ‘ 𝐴 )  +ℎ  0ℎ )  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +ℎ  0ℎ )  =  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 5 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 6 |  | choccl | ⊢ ( 𝐴  ∈   Cℋ   →  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  ) | 
						
							| 7 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  ( ⊥ ‘ 𝐴 )  ∈   Cℋ  )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ ) | 
						
							| 8 | 6 7 | sylan2 | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ ) | 
						
							| 9 |  | normcl | ⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 11 | 10 | resqcld | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 13 |  | pncan2 | ⊢ ( ( 1  ∈  ℂ  ∧  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  ∈  ℂ )  →  ( ( 1  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  −  1 )  =  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) | 
						
							| 14 | 5 12 13 | sylancr | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( 1  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  −  1 )  =  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( ( 1  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  −  1 )  =  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 17 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 18 | 16 17 | eqtr2di | ⊢ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  1  =  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  ( 1  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) ) ) | 
						
							| 20 |  | hstnmoc | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  =  1 ) | 
						
							| 21 | 19 20 | sylan9eqr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( 1  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  =  1 ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( ( 1  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 ) )  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 23 | 15 22 | eqtr3d | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  =  ( 1  −  1 ) ) | 
						
							| 24 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  =  0 ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  =  0 ) ) | 
						
							| 27 | 10 | recnd | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  ∈  ℂ ) | 
						
							| 28 |  | sqeq0 | ⊢ ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  ∈  ℂ  →  ( ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  =  0  ↔  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  0 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  =  0  ↔  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  0 ) ) | 
						
							| 30 |  | norm-i | ⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  ∈   ℋ  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  0  ↔  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  =  0ℎ ) ) | 
						
							| 31 | 8 30 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  0  ↔  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  =  0ℎ ) ) | 
						
							| 32 | 29 31 | bitrd | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) ) ↑ 2 )  =  0  ↔  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  =  0ℎ ) ) | 
						
							| 33 | 26 32 | sylibd | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  =  0ℎ ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) )  =  0ℎ ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  ( ( 𝑆 ‘ 𝐴 )  +ℎ  0ℎ ) ) | 
						
							| 36 |  | hstoc | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  ( 𝑆 ‘  ℋ ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +ℎ  ( 𝑆 ‘ ( ⊥ ‘ 𝐴 ) ) )  =  ( 𝑆 ‘  ℋ ) ) | 
						
							| 38 | 35 37 | eqtr3d | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( ( 𝑆 ‘ 𝐴 )  +ℎ  0ℎ )  =  ( 𝑆 ‘  ℋ ) ) | 
						
							| 39 | 4 38 | eqtr3d | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 )  →  ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘  ℋ ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘  ℋ )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  ( normℎ ‘ ( 𝑆 ‘  ℋ ) ) ) | 
						
							| 41 |  | hst1a | ⊢ ( 𝑆  ∈  CHStates  →  ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘  ℋ ) )  =  1 ) | 
						
							| 43 | 40 42 | sylan9eqr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘  ℋ ) )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1 ) | 
						
							| 44 | 39 43 | impbida | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  =  1  ↔  ( 𝑆 ‘ 𝐴 )  =  ( 𝑆 ‘  ℋ ) ) ) |