| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstcl |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H ) | 
						
							| 2 |  | ax-hvaddid |  |-  ( ( S ` A ) e. ~H -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) | 
						
							| 5 |  | ax-1cn |  |-  1 e. CC | 
						
							| 6 |  | choccl |  |-  ( A e. CH -> ( _|_ ` A ) e. CH ) | 
						
							| 7 |  | hstcl |  |-  ( ( S e. CHStates /\ ( _|_ ` A ) e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) | 
						
							| 8 | 6 7 | sylan2 |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) | 
						
							| 9 |  | normcl |  |-  ( ( S ` ( _|_ ` A ) ) e. ~H -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. RR ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. RR ) | 
						
							| 11 | 10 | resqcld |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. CC ) | 
						
							| 13 |  | pncan2 |  |-  ( ( 1 e. CC /\ ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. CC ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) | 
						
							| 14 | 5 12 13 | sylancr |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) | 
						
							| 16 |  | oveq1 |  |-  ( ( normh ` ( S ` A ) ) = 1 -> ( ( normh ` ( S ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 17 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 18 | 16 17 | eqtr2di |  |-  ( ( normh ` ( S ` A ) ) = 1 -> 1 = ( ( normh ` ( S ` A ) ) ^ 2 ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( normh ` ( S ` A ) ) = 1 -> ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) ) | 
						
							| 20 |  | hstnmoc |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = 1 ) | 
						
							| 21 | 19 20 | sylan9eqr |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = 1 ) | 
						
							| 22 | 21 | oveq1d |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( 1 - 1 ) ) | 
						
							| 23 | 15 22 | eqtr3d |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = ( 1 - 1 ) ) | 
						
							| 24 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 25 | 23 24 | eqtrdi |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 ) | 
						
							| 26 | 25 | ex |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 ) ) | 
						
							| 27 | 10 | recnd |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. CC ) | 
						
							| 28 |  | sqeq0 |  |-  ( ( normh ` ( S ` ( _|_ ` A ) ) ) e. CC -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 ) ) | 
						
							| 30 |  | norm-i |  |-  ( ( S ` ( _|_ ` A ) ) e. ~H -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) | 
						
							| 31 | 8 30 | syl |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) | 
						
							| 32 | 29 31 | bitrd |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) | 
						
							| 33 | 26 32 | sylibd |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 -> ( S ` ( _|_ ` A ) ) = 0h ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( S ` ( _|_ ` A ) ) = 0h ) | 
						
							| 35 | 34 | oveq2d |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( ( S ` A ) +h 0h ) ) | 
						
							| 36 |  | hstoc |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) | 
						
							| 38 | 35 37 | eqtr3d |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h 0h ) = ( S ` ~H ) ) | 
						
							| 39 | 4 38 | eqtr3d |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( S ` A ) = ( S ` ~H ) ) | 
						
							| 40 |  | fveq2 |  |-  ( ( S ` A ) = ( S ` ~H ) -> ( normh ` ( S ` A ) ) = ( normh ` ( S ` ~H ) ) ) | 
						
							| 41 |  | hst1a |  |-  ( S e. CHStates -> ( normh ` ( S ` ~H ) ) = 1 ) | 
						
							| 42 | 41 | adantr |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ~H ) ) = 1 ) | 
						
							| 43 | 40 42 | sylan9eqr |  |-  ( ( ( S e. CHStates /\ A e. CH ) /\ ( S ` A ) = ( S ` ~H ) ) -> ( normh ` ( S ` A ) ) = 1 ) | 
						
							| 44 | 39 43 | impbida |  |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 <-> ( S ` A ) = ( S ` ~H ) ) ) |