| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstcl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H ) |
| 2 |
|
ax-hvaddid |
|- ( ( S ` A ) e. ~H -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) |
| 3 |
1 2
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) |
| 4 |
3
|
adantr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) |
| 5 |
|
ax-1cn |
|- 1 e. CC |
| 6 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 7 |
|
hstcl |
|- ( ( S e. CHStates /\ ( _|_ ` A ) e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) |
| 8 |
6 7
|
sylan2 |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) |
| 9 |
|
normcl |
|- ( ( S ` ( _|_ ` A ) ) e. ~H -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. RR ) |
| 10 |
8 9
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. RR ) |
| 11 |
10
|
resqcld |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. RR ) |
| 12 |
11
|
recnd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. CC ) |
| 13 |
|
pncan2 |
|- ( ( 1 e. CC /\ ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. CC ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) |
| 14 |
5 12 13
|
sylancr |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) |
| 15 |
14
|
adantr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) |
| 16 |
|
oveq1 |
|- ( ( normh ` ( S ` A ) ) = 1 -> ( ( normh ` ( S ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 17 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 18 |
16 17
|
eqtr2di |
|- ( ( normh ` ( S ` A ) ) = 1 -> 1 = ( ( normh ` ( S ` A ) ) ^ 2 ) ) |
| 19 |
18
|
oveq1d |
|- ( ( normh ` ( S ` A ) ) = 1 -> ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) ) |
| 20 |
|
hstnmoc |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = 1 ) |
| 21 |
19 20
|
sylan9eqr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = 1 ) |
| 22 |
21
|
oveq1d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( 1 - 1 ) ) |
| 23 |
15 22
|
eqtr3d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = ( 1 - 1 ) ) |
| 24 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 25 |
23 24
|
eqtrdi |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 ) |
| 26 |
25
|
ex |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 ) ) |
| 27 |
10
|
recnd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. CC ) |
| 28 |
|
sqeq0 |
|- ( ( normh ` ( S ` ( _|_ ` A ) ) ) e. CC -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 ) ) |
| 29 |
27 28
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 ) ) |
| 30 |
|
norm-i |
|- ( ( S ` ( _|_ ` A ) ) e. ~H -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) |
| 31 |
8 30
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) |
| 32 |
29 31
|
bitrd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) |
| 33 |
26 32
|
sylibd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 -> ( S ` ( _|_ ` A ) ) = 0h ) ) |
| 34 |
33
|
imp |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( S ` ( _|_ ` A ) ) = 0h ) |
| 35 |
34
|
oveq2d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( ( S ` A ) +h 0h ) ) |
| 36 |
|
hstoc |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) |
| 37 |
36
|
adantr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) |
| 38 |
35 37
|
eqtr3d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h 0h ) = ( S ` ~H ) ) |
| 39 |
4 38
|
eqtr3d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( S ` A ) = ( S ` ~H ) ) |
| 40 |
|
fveq2 |
|- ( ( S ` A ) = ( S ` ~H ) -> ( normh ` ( S ` A ) ) = ( normh ` ( S ` ~H ) ) ) |
| 41 |
|
hst1a |
|- ( S e. CHStates -> ( normh ` ( S ` ~H ) ) = 1 ) |
| 42 |
41
|
adantr |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ~H ) ) = 1 ) |
| 43 |
40 42
|
sylan9eqr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( S ` A ) = ( S ` ~H ) ) -> ( normh ` ( S ` A ) ) = 1 ) |
| 44 |
39 43
|
impbida |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 <-> ( S ` A ) = ( S ` ~H ) ) ) |