Step |
Hyp |
Ref |
Expression |
1 |
|
hstcl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H ) |
2 |
|
ax-hvaddid |
|- ( ( S ` A ) e. ~H -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) |
3 |
1 2
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) |
4 |
3
|
adantr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h 0h ) = ( S ` A ) ) |
5 |
|
ax-1cn |
|- 1 e. CC |
6 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
7 |
|
hstcl |
|- ( ( S e. CHStates /\ ( _|_ ` A ) e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) |
8 |
6 7
|
sylan2 |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` ( _|_ ` A ) ) e. ~H ) |
9 |
|
normcl |
|- ( ( S ` ( _|_ ` A ) ) e. ~H -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. RR ) |
10 |
8 9
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. RR ) |
11 |
10
|
resqcld |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. RR ) |
12 |
11
|
recnd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. CC ) |
13 |
|
pncan2 |
|- ( ( 1 e. CC /\ ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) e. CC ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) |
14 |
5 12 13
|
sylancr |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) |
15 |
14
|
adantr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) |
16 |
|
oveq1 |
|- ( ( normh ` ( S ` A ) ) = 1 -> ( ( normh ` ( S ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
17 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
18 |
16 17
|
eqtr2di |
|- ( ( normh ` ( S ` A ) ) = 1 -> 1 = ( ( normh ` ( S ` A ) ) ^ 2 ) ) |
19 |
18
|
oveq1d |
|- ( ( normh ` ( S ` A ) ) = 1 -> ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) ) |
20 |
|
hstnmoc |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = 1 ) |
21 |
19 20
|
sylan9eqr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) = 1 ) |
22 |
21
|
oveq1d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( 1 + ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) ) - 1 ) = ( 1 - 1 ) ) |
23 |
15 22
|
eqtr3d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = ( 1 - 1 ) ) |
24 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
25 |
23 24
|
eqtrdi |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 ) |
26 |
25
|
ex |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 ) ) |
27 |
10
|
recnd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ( _|_ ` A ) ) ) e. CC ) |
28 |
|
sqeq0 |
|- ( ( normh ` ( S ` ( _|_ ` A ) ) ) e. CC -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 ) ) |
29 |
27 28
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 ) ) |
30 |
|
norm-i |
|- ( ( S ` ( _|_ ` A ) ) e. ~H -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) |
31 |
8 30
|
syl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` ( _|_ ` A ) ) ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) |
32 |
29 31
|
bitrd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( ( normh ` ( S ` ( _|_ ` A ) ) ) ^ 2 ) = 0 <-> ( S ` ( _|_ ` A ) ) = 0h ) ) |
33 |
26 32
|
sylibd |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 -> ( S ` ( _|_ ` A ) ) = 0h ) ) |
34 |
33
|
imp |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( S ` ( _|_ ` A ) ) = 0h ) |
35 |
34
|
oveq2d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( ( S ` A ) +h 0h ) ) |
36 |
|
hstoc |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) |
37 |
36
|
adantr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h ( S ` ( _|_ ` A ) ) ) = ( S ` ~H ) ) |
38 |
35 37
|
eqtr3d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( ( S ` A ) +h 0h ) = ( S ` ~H ) ) |
39 |
4 38
|
eqtr3d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( normh ` ( S ` A ) ) = 1 ) -> ( S ` A ) = ( S ` ~H ) ) |
40 |
|
fveq2 |
|- ( ( S ` A ) = ( S ` ~H ) -> ( normh ` ( S ` A ) ) = ( normh ` ( S ` ~H ) ) ) |
41 |
|
hst1a |
|- ( S e. CHStates -> ( normh ` ( S ` ~H ) ) = 1 ) |
42 |
41
|
adantr |
|- ( ( S e. CHStates /\ A e. CH ) -> ( normh ` ( S ` ~H ) ) = 1 ) |
43 |
40 42
|
sylan9eqr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( S ` A ) = ( S ` ~H ) ) -> ( normh ` ( S ` A ) ) = 1 ) |
44 |
39 43
|
impbida |
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 1 <-> ( S ` A ) = ( S ` ~H ) ) ) |