Metamath Proof Explorer


Theorem hst1h

Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice unit. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hst1h S CHStates A C norm S A = 1 S A = S

Proof

Step Hyp Ref Expression
1 hstcl S CHStates A C S A
2 ax-hvaddid S A S A + 0 = S A
3 1 2 syl S CHStates A C S A + 0 = S A
4 3 adantr S CHStates A C norm S A = 1 S A + 0 = S A
5 ax-1cn 1
6 choccl A C A C
7 hstcl S CHStates A C S A
8 6 7 sylan2 S CHStates A C S A
9 normcl S A norm S A
10 8 9 syl S CHStates A C norm S A
11 10 resqcld S CHStates A C norm S A 2
12 11 recnd S CHStates A C norm S A 2
13 pncan2 1 norm S A 2 1 + norm S A 2 - 1 = norm S A 2
14 5 12 13 sylancr S CHStates A C 1 + norm S A 2 - 1 = norm S A 2
15 14 adantr S CHStates A C norm S A = 1 1 + norm S A 2 - 1 = norm S A 2
16 oveq1 norm S A = 1 norm S A 2 = 1 2
17 sq1 1 2 = 1
18 16 17 eqtr2di norm S A = 1 1 = norm S A 2
19 18 oveq1d norm S A = 1 1 + norm S A 2 = norm S A 2 + norm S A 2
20 hstnmoc S CHStates A C norm S A 2 + norm S A 2 = 1
21 19 20 sylan9eqr S CHStates A C norm S A = 1 1 + norm S A 2 = 1
22 21 oveq1d S CHStates A C norm S A = 1 1 + norm S A 2 - 1 = 1 1
23 15 22 eqtr3d S CHStates A C norm S A = 1 norm S A 2 = 1 1
24 1m1e0 1 1 = 0
25 23 24 eqtrdi S CHStates A C norm S A = 1 norm S A 2 = 0
26 25 ex S CHStates A C norm S A = 1 norm S A 2 = 0
27 10 recnd S CHStates A C norm S A
28 sqeq0 norm S A norm S A 2 = 0 norm S A = 0
29 27 28 syl S CHStates A C norm S A 2 = 0 norm S A = 0
30 norm-i S A norm S A = 0 S A = 0
31 8 30 syl S CHStates A C norm S A = 0 S A = 0
32 29 31 bitrd S CHStates A C norm S A 2 = 0 S A = 0
33 26 32 sylibd S CHStates A C norm S A = 1 S A = 0
34 33 imp S CHStates A C norm S A = 1 S A = 0
35 34 oveq2d S CHStates A C norm S A = 1 S A + S A = S A + 0
36 hstoc S CHStates A C S A + S A = S
37 36 adantr S CHStates A C norm S A = 1 S A + S A = S
38 35 37 eqtr3d S CHStates A C norm S A = 1 S A + 0 = S
39 4 38 eqtr3d S CHStates A C norm S A = 1 S A = S
40 fveq2 S A = S norm S A = norm S
41 hst1a S CHStates norm S = 1
42 41 adantr S CHStates A C norm S = 1
43 40 42 sylan9eqr S CHStates A C S A = S norm S A = 1
44 39 43 impbida S CHStates A C norm S A = 1 S A = S