Metamath Proof Explorer


Theorem hst1a

Description: Unit value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hst1a SCHStatesnormS=1

Proof

Step Hyp Ref Expression
1 ishst SCHStatesS:CnormS=1xCyCxySxihSy=0Sxy=Sx+Sy
2 1 simp2bi SCHStatesnormS=1