Metamath Proof Explorer


Theorem hstel2

Description: Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstel2 S CHStates A C B C A B S A ih S B = 0 S A B = S A + S B

Proof

Step Hyp Ref Expression
1 ishst S CHStates S : C norm S = 1 x C y C x y S x ih S y = 0 S x y = S x + S y
2 1 simp3bi S CHStates x C y C x y S x ih S y = 0 S x y = S x + S y
3 2 ad2antrr S CHStates A C B C A B x C y C x y S x ih S y = 0 S x y = S x + S y
4 sseq1 x = A x y A y
5 fveq2 x = A S x = S A
6 5 oveq1d x = A S x ih S y = S A ih S y
7 6 eqeq1d x = A S x ih S y = 0 S A ih S y = 0
8 fvoveq1 x = A S x y = S A y
9 5 oveq1d x = A S x + S y = S A + S y
10 8 9 eqeq12d x = A S x y = S x + S y S A y = S A + S y
11 7 10 anbi12d x = A S x ih S y = 0 S x y = S x + S y S A ih S y = 0 S A y = S A + S y
12 4 11 imbi12d x = A x y S x ih S y = 0 S x y = S x + S y A y S A ih S y = 0 S A y = S A + S y
13 fveq2 y = B y = B
14 13 sseq2d y = B A y A B
15 fveq2 y = B S y = S B
16 15 oveq2d y = B S A ih S y = S A ih S B
17 16 eqeq1d y = B S A ih S y = 0 S A ih S B = 0
18 oveq2 y = B A y = A B
19 18 fveq2d y = B S A y = S A B
20 15 oveq2d y = B S A + S y = S A + S B
21 19 20 eqeq12d y = B S A y = S A + S y S A B = S A + S B
22 17 21 anbi12d y = B S A ih S y = 0 S A y = S A + S y S A ih S B = 0 S A B = S A + S B
23 14 22 imbi12d y = B A y S A ih S y = 0 S A y = S A + S y A B S A ih S B = 0 S A B = S A + S B
24 12 23 rspc2v A C B C x C y C x y S x ih S y = 0 S x y = S x + S y A B S A ih S B = 0 S A B = S A + S B
25 24 com23 A C B C A B x C y C x y S x ih S y = 0 S x y = S x + S y S A ih S B = 0 S A B = S A + S B
26 25 impr A C B C A B x C y C x y S x ih S y = 0 S x y = S x + S y S A ih S B = 0 S A B = S A + S B
27 26 adantll S CHStates A C B C A B x C y C x y S x ih S y = 0 S x y = S x + S y S A ih S B = 0 S A B = S A + S B
28 3 27 mpd S CHStates A C B C A B S A ih S B = 0 S A B = S A + S B