| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstnmoc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) = 1 ) |
| 2 |
1
|
adantlr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) = 1 ) |
| 3 |
2
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ) |
| 4 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |
| 5 |
|
normcl |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
| 7 |
6
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
| 9 |
8
|
recnd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ ) |
| 10 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( 𝑆 ‘ 𝐵 ) ∈ ℋ ) |
| 11 |
|
normcl |
⊢ ( ( 𝑆 ‘ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ) |
| 12 |
10 11
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ) |
| 13 |
12
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
| 14 |
13
|
adantlr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℂ ) |
| 16 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
| 17 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ ) |
| 18 |
16 17
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ ) |
| 19 |
|
normcl |
⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℝ ) |
| 21 |
20
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 22 |
21
|
adantlr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 24 |
9 15 23
|
add12d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) |
| 25 |
3 24
|
eqtr3d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) |
| 26 |
25
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) |
| 27 |
16
|
adantr |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
| 28 |
|
ococ |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) |
| 29 |
28
|
sseq2d |
⊢ ( 𝐵 ∈ Cℋ → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ↔ 𝐴 ⊆ 𝐵 ) ) |
| 30 |
29
|
biimpar |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 31 |
27 30
|
jca |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 32 |
|
hstpyth |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) |
| 33 |
31 32
|
sylan2 |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) |
| 34 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
| 35 |
16 34
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
| 36 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ ) |
| 37 |
35 36
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ ) |
| 38 |
37
|
anassrs |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ ) |
| 39 |
|
normcl |
⊢ ( ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ) |
| 41 |
|
normge0 |
⊢ ( ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 42 |
38 41
|
syl |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 43 |
|
hstle1 |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) |
| 44 |
35 43
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) |
| 45 |
44
|
anassrs |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) |
| 46 |
|
1re |
⊢ 1 ∈ ℝ |
| 47 |
|
le2sq2 |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) ∧ ( 1 ∈ ℝ ∧ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 48 |
46 47
|
mpanr1 |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) ∧ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 49 |
40 42 45 48
|
syl21anc |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
| 50 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 51 |
49 50
|
breqtrdi |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ 1 ) |
| 52 |
51
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ 1 ) |
| 53 |
33 52
|
eqbrtrrd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ) |
| 54 |
8 22
|
readdcld |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ ) |
| 55 |
|
leadd2 |
⊢ ( ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
| 56 |
46 55
|
mp3an2 |
⊢ ( ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
| 57 |
54 14 56
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
| 58 |
57
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
| 59 |
53 58
|
mpbid |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) |
| 60 |
26 59
|
eqbrtrd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) |
| 61 |
|
leadd1 |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
| 62 |
46 61
|
mp3an3 |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
| 63 |
8 14 62
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
| 64 |
63
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
| 65 |
60 64
|
mpbird |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) |
| 66 |
|
normge0 |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 67 |
4 66
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
| 68 |
6 67
|
jca |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
| 70 |
|
normge0 |
⊢ ( ( 𝑆 ‘ 𝐵 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) |
| 71 |
10 70
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) |
| 72 |
12 71
|
jca |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) |
| 73 |
72
|
adantlr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) |
| 74 |
|
le2sq |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 75 |
69 73 74
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 76 |
75
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
| 77 |
65 76
|
mpbird |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) |