Step |
Hyp |
Ref |
Expression |
1 |
|
hstnmoc |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) = 1 ) |
2 |
1
|
adantlr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) = 1 ) |
3 |
2
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ) |
4 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) |
5 |
|
normcl |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ) |
7 |
6
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℂ ) |
10 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( 𝑆 ‘ 𝐵 ) ∈ ℋ ) |
11 |
|
normcl |
⊢ ( ( 𝑆 ‘ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ) |
13 |
12
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
14 |
13
|
adantlr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) |
15 |
14
|
recnd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℂ ) |
16 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
17 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ ) |
19 |
|
normcl |
⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℝ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℝ ) |
21 |
20
|
resqcld |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
22 |
21
|
adantlr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
24 |
9 15 23
|
add12d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) |
25 |
3 24
|
eqtr3d |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) |
26 |
25
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) |
27 |
16
|
adantr |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
28 |
|
ococ |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 ) |
29 |
28
|
sseq2d |
⊢ ( 𝐵 ∈ Cℋ → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ↔ 𝐴 ⊆ 𝐵 ) ) |
30 |
29
|
biimpar |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
31 |
27 30
|
jca |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
32 |
|
hstpyth |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) |
33 |
31 32
|
sylan2 |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) = ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) |
34 |
|
chjcl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
35 |
16 34
|
sylan2 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
36 |
|
hstcl |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ ) |
37 |
35 36
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ ) |
38 |
37
|
anassrs |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ ) |
39 |
|
normcl |
⊢ ( ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ) |
40 |
38 39
|
syl |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ) |
41 |
|
normge0 |
⊢ ( ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
42 |
38 41
|
syl |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
43 |
|
hstle1 |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) |
44 |
35 43
|
sylan2 |
⊢ ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) |
45 |
44
|
anassrs |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) |
46 |
|
1re |
⊢ 1 ∈ ℝ |
47 |
|
le2sq2 |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) ∧ ( 1 ∈ ℝ ∧ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
48 |
46 47
|
mpanr1 |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) ∧ ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
49 |
40 42 45 48
|
syl21anc |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) ) |
50 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
51 |
49 50
|
breqtrdi |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ 1 ) |
52 |
51
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ 1 ) |
53 |
33 52
|
eqbrtrrd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ) |
54 |
8 22
|
readdcld |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ ) |
55 |
|
leadd2 |
⊢ ( ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
56 |
46 55
|
mp3an2 |
⊢ ( ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
57 |
54 14 56
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
58 |
57
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
59 |
53 58
|
mpbid |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) |
60 |
26 59
|
eqbrtrd |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) |
61 |
|
leadd1 |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
62 |
46 61
|
mp3an3 |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
63 |
8 14 62
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
64 |
63
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ↔ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) + 1 ) ) ) |
65 |
60 64
|
mpbird |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) |
66 |
|
normge0 |
⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
67 |
4 66
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
68 |
6 67
|
jca |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) |
70 |
|
normge0 |
⊢ ( ( 𝑆 ‘ 𝐵 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) |
71 |
10 70
|
syl |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) |
72 |
12 71
|
jca |
⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) |
73 |
72
|
adantlr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) |
74 |
|
le2sq |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ∧ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
75 |
69 73 74
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ 𝐵 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
76 |
75
|
adantrr |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↔ ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) |
77 |
65 76
|
mpbird |
⊢ ( ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) ) → ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) |