| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hstnmoc | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  =  1 ) | 
						
							| 2 | 1 | adantlr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  =  1 ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  1 ) ) | 
						
							| 4 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( 𝑆 ‘ 𝐴 )  ∈   ℋ ) | 
						
							| 5 |  | normcl | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 7 | 6 | resqcld | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 10 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( 𝑆 ‘ 𝐵 )  ∈   ℋ ) | 
						
							| 11 |  | normcl | ⊢ ( ( 𝑆 ‘ 𝐵 )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 13 | 12 | resqcld | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 14 | 13 | adantlr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 16 |  | choccl | ⊢ ( 𝐵  ∈   Cℋ   →  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  ) | 
						
							| 17 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) )  ∈   ℋ ) | 
						
							| 18 | 16 17 | sylan2 | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) )  ∈   ℋ ) | 
						
							| 19 |  | normcl | ⊢ ( ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) )  ∈  ℝ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) )  ∈  ℝ ) | 
						
							| 21 | 20 | resqcld | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 22 | 21 | adantlr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 23 | 22 | recnd | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 24 | 9 15 23 | add12d | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) | 
						
							| 25 | 3 24 | eqtr3d | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  1 )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) | 
						
							| 26 | 25 | adantrr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  1 )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ) | 
						
							| 27 | 16 | adantr | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 )  →  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  ) | 
						
							| 28 |  | ococ | ⊢ ( 𝐵  ∈   Cℋ   →  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 29 | 28 | sseq2d | ⊢ ( 𝐵  ∈   Cℋ   →  ( 𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 30 | 29 | biimpar | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 )  →  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) | 
						
							| 31 | 27 30 | jca | ⊢ ( ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 )  →  ( ( ⊥ ‘ 𝐵 )  ∈   Cℋ   ∧  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | 
						
							| 32 |  | hstpyth | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( ( ⊥ ‘ 𝐵 )  ∈   Cℋ   ∧  𝐴  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) | 
						
							| 33 | 31 32 | sylan2 | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 )  =  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) | 
						
							| 34 |  | chjcl | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  ( ⊥ ‘ 𝐵 )  ∈   Cℋ  )  →  ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ  ) | 
						
							| 35 | 16 34 | sylan2 | ⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ  ) | 
						
							| 36 |  | hstcl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ  )  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ∈   ℋ ) | 
						
							| 37 | 35 36 | sylan2 | ⊢ ( ( 𝑆  ∈  CHStates  ∧  ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  ) )  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ∈   ℋ ) | 
						
							| 38 | 37 | anassrs | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ∈   ℋ ) | 
						
							| 39 |  | normcl | ⊢ ( ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ∈   ℋ  →  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ∈  ℝ ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ∈  ℝ ) | 
						
							| 41 |  | normge0 | ⊢ ( ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ) | 
						
							| 42 | 38 41 | syl | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  0  ≤  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ) | 
						
							| 43 |  | hstle1 | ⊢ ( ( 𝑆  ∈  CHStates  ∧  ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ≤  1 ) | 
						
							| 44 | 35 43 | sylan2 | ⊢ ( ( 𝑆  ∈  CHStates  ∧  ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  ) )  →  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ≤  1 ) | 
						
							| 45 | 44 | anassrs | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ≤  1 ) | 
						
							| 46 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 47 |  | le2sq2 | ⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) )  ∧  ( 1  ∈  ℝ  ∧  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ≤  1 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 48 | 46 47 | mpanr1 | ⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) )  ∧  ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) )  ≤  1 )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 49 | 40 42 45 48 | syl21anc | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 )  ≤  ( 1 ↑ 2 ) ) | 
						
							| 50 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 51 | 49 50 | breqtrdi | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 )  ≤  1 ) | 
						
							| 52 | 51 | adantrr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ ( 𝐴  ∨ℋ  ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 )  ≤  1 ) | 
						
							| 53 | 33 52 | eqbrtrrd | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  ≤  1 ) | 
						
							| 54 | 8 22 | readdcld | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  ∈  ℝ ) | 
						
							| 55 |  | leadd2 | ⊢ ( ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℝ )  →  ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  ≤  1  ↔  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) ) | 
						
							| 56 | 46 55 | mp3an2 | ⊢ ( ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  ∈  ℝ  ∧  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℝ )  →  ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  ≤  1  ↔  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) ) | 
						
							| 57 | 54 14 56 | syl2anc | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  ≤  1  ↔  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) ) | 
						
							| 58 | 57 | adantrr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) )  ≤  1  ↔  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) ) | 
						
							| 59 | 53 58 | mpbid | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  ( ( normℎ ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) | 
						
							| 60 | 26 59 | eqbrtrd | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  1 )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) | 
						
							| 61 |  | leadd1 | ⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℝ  ∧  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ↔  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  1 )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) ) | 
						
							| 62 | 46 61 | mp3an3 | ⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ∈  ℝ  ∧  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ∈  ℝ )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ↔  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  1 )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) ) | 
						
							| 63 | 8 14 62 | syl2anc | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ↔  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  1 )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) ) | 
						
							| 64 | 63 | adantrr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  ↔  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  +  1 )  ≤  ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 )  +  1 ) ) ) | 
						
							| 65 | 60 64 | mpbird | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) | 
						
							| 66 |  | normge0 | ⊢ ( ( 𝑆 ‘ 𝐴 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 67 | 4 66 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) | 
						
							| 68 | 6 67 | jca | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ) ) | 
						
							| 70 |  | normge0 | ⊢ ( ( 𝑆 ‘ 𝐵 )  ∈   ℋ  →  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 71 | 10 70 | syl | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) | 
						
							| 72 | 12 71 | jca | ⊢ ( ( 𝑆  ∈  CHStates  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) | 
						
							| 73 | 72 | adantlr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) ) | 
						
							| 74 |  | le2sq | ⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) )  ∧  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ∈  ℝ  ∧  0  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 75 | 69 73 74 | syl2anc | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  𝐵  ∈   Cℋ  )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 76 | 75 | adantrr | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) )  ↔  ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) ↑ 2 )  ≤  ( ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ↑ 2 ) ) ) | 
						
							| 77 | 65 76 | mpbird | ⊢ ( ( ( 𝑆  ∈  CHStates  ∧  𝐴  ∈   Cℋ  )  ∧  ( 𝐵  ∈   Cℋ   ∧  𝐴  ⊆  𝐵 ) )  →  ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) )  ≤  ( normℎ ‘ ( 𝑆 ‘ 𝐵 ) ) ) |