Metamath Proof Explorer


Theorem hstle

Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstle ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( norm ‘ ( 𝑆𝐴 ) ) ≤ ( norm ‘ ( 𝑆𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 hstnmoc ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) = 1 )
2 1 adantlr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) = 1 )
3 2 oveq2d ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) = ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 1 ) )
4 hstcl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( 𝑆𝐴 ) ∈ ℋ )
5 normcl ( ( 𝑆𝐴 ) ∈ ℋ → ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ )
6 4 5 syl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ )
7 6 resqcld ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ∈ ℝ )
8 7 adantr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ∈ ℝ )
9 8 recnd ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ∈ ℂ )
10 hstcl ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → ( 𝑆𝐵 ) ∈ ℋ )
11 normcl ( ( 𝑆𝐵 ) ∈ ℋ → ( norm ‘ ( 𝑆𝐵 ) ) ∈ ℝ )
12 10 11 syl ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → ( norm ‘ ( 𝑆𝐵 ) ) ∈ ℝ )
13 12 resqcld ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ∈ ℝ )
14 13 adantlr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ∈ ℝ )
15 14 recnd ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ∈ ℂ )
16 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
17 hstcl ( ( 𝑆 ∈ CHStates ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ )
18 16 17 sylan2 ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ )
19 normcl ( ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ∈ ℋ → ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℝ )
20 18 19 syl ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ∈ ℝ )
21 20 resqcld ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℝ )
22 21 adantlr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℝ )
23 22 recnd ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ∈ ℂ )
24 9 15 23 add12d ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) = ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) )
25 3 24 eqtr3d ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 1 ) = ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) )
26 25 adantrr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 1 ) = ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) )
27 16 adantr ( ( 𝐵C𝐴𝐵 ) → ( ⊥ ‘ 𝐵 ) ∈ C )
28 ococ ( 𝐵C → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 )
29 28 sseq2d ( 𝐵C → ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ↔ 𝐴𝐵 ) )
30 29 biimpar ( ( 𝐵C𝐴𝐵 ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )
31 27 30 jca ( ( 𝐵C𝐴𝐵 ) → ( ( ⊥ ‘ 𝐵 ) ∈ C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
32 hstpyth ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( ( ⊥ ‘ 𝐵 ) ∈ C𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) → ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )
33 31 32 sylan2 ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) = ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) )
34 chjcl ( ( 𝐴C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) → ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ∈ C )
35 16 34 sylan2 ( ( 𝐴C𝐵C ) → ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ∈ C )
36 hstcl ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ∈ C ) → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ )
37 35 36 sylan2 ( ( 𝑆 ∈ CHStates ∧ ( 𝐴C𝐵C ) ) → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ )
38 37 anassrs ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ )
39 normcl ( ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ → ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ )
40 38 39 syl ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ )
41 normge0 ( ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ∈ ℋ → 0 ≤ ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) )
42 38 41 syl ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → 0 ≤ ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) )
43 hstle1 ( ( 𝑆 ∈ CHStates ∧ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ∈ C ) → ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 )
44 35 43 sylan2 ( ( 𝑆 ∈ CHStates ∧ ( 𝐴C𝐵C ) ) → ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 )
45 44 anassrs ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 )
46 1re 1 ∈ ℝ
47 le2sq2 ( ( ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ) ∧ ( 1 ∈ ℝ ∧ ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) ) → ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) )
48 46 47 mpanr1 ( ( ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ) ∧ ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ≤ 1 ) → ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) )
49 40 42 45 48 syl21anc ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ ( 1 ↑ 2 ) )
50 sq1 ( 1 ↑ 2 ) = 1
51 49 50 breqtrdi ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ 1 )
52 51 adantrr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( norm ‘ ( 𝑆 ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ↑ 2 ) ≤ 1 )
53 33 52 eqbrtrrd ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 )
54 8 22 readdcld ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ )
55 leadd2 ( ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) ) )
56 46 55 mp3an2 ( ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ∈ ℝ ∧ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) ) )
57 54 14 56 syl2anc ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) ) )
58 57 adantrr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ≤ 1 ↔ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) ) )
59 53 58 mpbid ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + ( ( norm ‘ ( 𝑆 ‘ ( ⊥ ‘ 𝐵 ) ) ) ↑ 2 ) ) ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) )
60 26 59 eqbrtrd ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) )
61 leadd1 ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ∈ ℝ ∧ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ↔ ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) ) )
62 46 61 mp3an3 ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ∈ ℝ ∧ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ∈ ℝ ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ↔ ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) ) )
63 8 14 62 syl2anc ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ↔ ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) ) )
64 63 adantrr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ↔ ( ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) + 1 ) ≤ ( ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) + 1 ) ) )
65 60 64 mpbird ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) )
66 normge0 ( ( 𝑆𝐴 ) ∈ ℋ → 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) )
67 4 66 syl ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) )
68 6 67 jca ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) ) )
69 68 adantr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) ) )
70 normge0 ( ( 𝑆𝐵 ) ∈ ℋ → 0 ≤ ( norm ‘ ( 𝑆𝐵 ) ) )
71 10 70 syl ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → 0 ≤ ( norm ‘ ( 𝑆𝐵 ) ) )
72 12 71 jca ( ( 𝑆 ∈ CHStates ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆𝐵 ) ) ) )
73 72 adantlr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆𝐵 ) ) ) )
74 le2sq ( ( ( ( norm ‘ ( 𝑆𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆𝐴 ) ) ) ∧ ( ( norm ‘ ( 𝑆𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( norm ‘ ( 𝑆𝐵 ) ) ) ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ≤ ( norm ‘ ( 𝑆𝐵 ) ) ↔ ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ) )
75 69 73 74 syl2anc ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ 𝐵C ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ≤ ( norm ‘ ( 𝑆𝐵 ) ) ↔ ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ) )
76 75 adantrr ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( ( norm ‘ ( 𝑆𝐴 ) ) ≤ ( norm ‘ ( 𝑆𝐵 ) ) ↔ ( ( norm ‘ ( 𝑆𝐴 ) ) ↑ 2 ) ≤ ( ( norm ‘ ( 𝑆𝐵 ) ) ↑ 2 ) ) )
77 65 76 mpbird ( ( ( 𝑆 ∈ CHStates ∧ 𝐴C ) ∧ ( 𝐵C𝐴𝐵 ) ) → ( norm ‘ ( 𝑆𝐴 ) ) ≤ ( norm ‘ ( 𝑆𝐵 ) ) )