Metamath Proof Explorer


Theorem hstle

Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstle S CHStates A C B C A B norm S A norm S B

Proof

Step Hyp Ref Expression
1 hstnmoc S CHStates B C norm S B 2 + norm S B 2 = 1
2 1 adantlr S CHStates A C B C norm S B 2 + norm S B 2 = 1
3 2 oveq2d S CHStates A C B C norm S A 2 + norm S B 2 + norm S B 2 = norm S A 2 + 1
4 hstcl S CHStates A C S A
5 normcl S A norm S A
6 4 5 syl S CHStates A C norm S A
7 6 resqcld S CHStates A C norm S A 2
8 7 adantr S CHStates A C B C norm S A 2
9 8 recnd S CHStates A C B C norm S A 2
10 hstcl S CHStates B C S B
11 normcl S B norm S B
12 10 11 syl S CHStates B C norm S B
13 12 resqcld S CHStates B C norm S B 2
14 13 adantlr S CHStates A C B C norm S B 2
15 14 recnd S CHStates A C B C norm S B 2
16 choccl B C B C
17 hstcl S CHStates B C S B
18 16 17 sylan2 S CHStates B C S B
19 normcl S B norm S B
20 18 19 syl S CHStates B C norm S B
21 20 resqcld S CHStates B C norm S B 2
22 21 adantlr S CHStates A C B C norm S B 2
23 22 recnd S CHStates A C B C norm S B 2
24 9 15 23 add12d S CHStates A C B C norm S A 2 + norm S B 2 + norm S B 2 = norm S B 2 + norm S A 2 + norm S B 2
25 3 24 eqtr3d S CHStates A C B C norm S A 2 + 1 = norm S B 2 + norm S A 2 + norm S B 2
26 25 adantrr S CHStates A C B C A B norm S A 2 + 1 = norm S B 2 + norm S A 2 + norm S B 2
27 16 adantr B C A B B C
28 ococ B C B = B
29 28 sseq2d B C A B A B
30 29 biimpar B C A B A B
31 27 30 jca B C A B B C A B
32 hstpyth S CHStates A C B C A B norm S A B 2 = norm S A 2 + norm S B 2
33 31 32 sylan2 S CHStates A C B C A B norm S A B 2 = norm S A 2 + norm S B 2
34 chjcl A C B C A B C
35 16 34 sylan2 A C B C A B C
36 hstcl S CHStates A B C S A B
37 35 36 sylan2 S CHStates A C B C S A B
38 37 anassrs S CHStates A C B C S A B
39 normcl S A B norm S A B
40 38 39 syl S CHStates A C B C norm S A B
41 normge0 S A B 0 norm S A B
42 38 41 syl S CHStates A C B C 0 norm S A B
43 hstle1 S CHStates A B C norm S A B 1
44 35 43 sylan2 S CHStates A C B C norm S A B 1
45 44 anassrs S CHStates A C B C norm S A B 1
46 1re 1
47 le2sq2 norm S A B 0 norm S A B 1 norm S A B 1 norm S A B 2 1 2
48 46 47 mpanr1 norm S A B 0 norm S A B norm S A B 1 norm S A B 2 1 2
49 40 42 45 48 syl21anc S CHStates A C B C norm S A B 2 1 2
50 sq1 1 2 = 1
51 49 50 breqtrdi S CHStates A C B C norm S A B 2 1
52 51 adantrr S CHStates A C B C A B norm S A B 2 1
53 33 52 eqbrtrrd S CHStates A C B C A B norm S A 2 + norm S B 2 1
54 8 22 readdcld S CHStates A C B C norm S A 2 + norm S B 2
55 leadd2 norm S A 2 + norm S B 2 1 norm S B 2 norm S A 2 + norm S B 2 1 norm S B 2 + norm S A 2 + norm S B 2 norm S B 2 + 1
56 46 55 mp3an2 norm S A 2 + norm S B 2 norm S B 2 norm S A 2 + norm S B 2 1 norm S B 2 + norm S A 2 + norm S B 2 norm S B 2 + 1
57 54 14 56 syl2anc S CHStates A C B C norm S A 2 + norm S B 2 1 norm S B 2 + norm S A 2 + norm S B 2 norm S B 2 + 1
58 57 adantrr S CHStates A C B C A B norm S A 2 + norm S B 2 1 norm S B 2 + norm S A 2 + norm S B 2 norm S B 2 + 1
59 53 58 mpbid S CHStates A C B C A B norm S B 2 + norm S A 2 + norm S B 2 norm S B 2 + 1
60 26 59 eqbrtrd S CHStates A C B C A B norm S A 2 + 1 norm S B 2 + 1
61 leadd1 norm S A 2 norm S B 2 1 norm S A 2 norm S B 2 norm S A 2 + 1 norm S B 2 + 1
62 46 61 mp3an3 norm S A 2 norm S B 2 norm S A 2 norm S B 2 norm S A 2 + 1 norm S B 2 + 1
63 8 14 62 syl2anc S CHStates A C B C norm S A 2 norm S B 2 norm S A 2 + 1 norm S B 2 + 1
64 63 adantrr S CHStates A C B C A B norm S A 2 norm S B 2 norm S A 2 + 1 norm S B 2 + 1
65 60 64 mpbird S CHStates A C B C A B norm S A 2 norm S B 2
66 normge0 S A 0 norm S A
67 4 66 syl S CHStates A C 0 norm S A
68 6 67 jca S CHStates A C norm S A 0 norm S A
69 68 adantr S CHStates A C B C norm S A 0 norm S A
70 normge0 S B 0 norm S B
71 10 70 syl S CHStates B C 0 norm S B
72 12 71 jca S CHStates B C norm S B 0 norm S B
73 72 adantlr S CHStates A C B C norm S B 0 norm S B
74 le2sq norm S A 0 norm S A norm S B 0 norm S B norm S A norm S B norm S A 2 norm S B 2
75 69 73 74 syl2anc S CHStates A C B C norm S A norm S B norm S A 2 norm S B 2
76 75 adantrr S CHStates A C B C A B norm S A norm S B norm S A 2 norm S B 2
77 65 76 mpbird S CHStates A C B C A B norm S A norm S B