Step |
Hyp |
Ref |
Expression |
1 |
|
hstnmoc |
|
2 |
1
|
adantlr |
|
3 |
2
|
oveq2d |
|
4 |
|
hstcl |
|
5 |
|
normcl |
|
6 |
4 5
|
syl |
|
7 |
6
|
resqcld |
|
8 |
7
|
adantr |
|
9 |
8
|
recnd |
|
10 |
|
hstcl |
|
11 |
|
normcl |
|
12 |
10 11
|
syl |
|
13 |
12
|
resqcld |
|
14 |
13
|
adantlr |
|
15 |
14
|
recnd |
|
16 |
|
choccl |
|
17 |
|
hstcl |
|
18 |
16 17
|
sylan2 |
|
19 |
|
normcl |
|
20 |
18 19
|
syl |
|
21 |
20
|
resqcld |
|
22 |
21
|
adantlr |
|
23 |
22
|
recnd |
|
24 |
9 15 23
|
add12d |
|
25 |
3 24
|
eqtr3d |
|
26 |
25
|
adantrr |
|
27 |
16
|
adantr |
|
28 |
|
ococ |
|
29 |
28
|
sseq2d |
|
30 |
29
|
biimpar |
|
31 |
27 30
|
jca |
|
32 |
|
hstpyth |
|
33 |
31 32
|
sylan2 |
|
34 |
|
chjcl |
|
35 |
16 34
|
sylan2 |
|
36 |
|
hstcl |
|
37 |
35 36
|
sylan2 |
|
38 |
37
|
anassrs |
|
39 |
|
normcl |
|
40 |
38 39
|
syl |
|
41 |
|
normge0 |
|
42 |
38 41
|
syl |
|
43 |
|
hstle1 |
|
44 |
35 43
|
sylan2 |
|
45 |
44
|
anassrs |
|
46 |
|
1re |
|
47 |
|
le2sq2 |
|
48 |
46 47
|
mpanr1 |
|
49 |
40 42 45 48
|
syl21anc |
|
50 |
|
sq1 |
|
51 |
49 50
|
breqtrdi |
|
52 |
51
|
adantrr |
|
53 |
33 52
|
eqbrtrrd |
|
54 |
8 22
|
readdcld |
|
55 |
|
leadd2 |
|
56 |
46 55
|
mp3an2 |
|
57 |
54 14 56
|
syl2anc |
|
58 |
57
|
adantrr |
|
59 |
53 58
|
mpbid |
|
60 |
26 59
|
eqbrtrd |
|
61 |
|
leadd1 |
|
62 |
46 61
|
mp3an3 |
|
63 |
8 14 62
|
syl2anc |
|
64 |
63
|
adantrr |
|
65 |
60 64
|
mpbird |
|
66 |
|
normge0 |
|
67 |
4 66
|
syl |
|
68 |
6 67
|
jca |
|
69 |
68
|
adantr |
|
70 |
|
normge0 |
|
71 |
10 70
|
syl |
|
72 |
12 71
|
jca |
|
73 |
72
|
adantlr |
|
74 |
|
le2sq |
|
75 |
69 73 74
|
syl2anc |
|
76 |
75
|
adantrr |
|
77 |
65 76
|
mpbird |
|