Metamath Proof Explorer


Theorem hstles

Description: Ordering property of a Hilbert-space-valued state. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hstles S CHStates A C B C A B norm S A = 1 norm S B = 1

Proof

Step Hyp Ref Expression
1 simpr S CHStates A C B C A B norm S A = 1 norm S A = 1
2 hstle S CHStates A C B C A B norm S A norm S B
3 2 adantr S CHStates A C B C A B norm S A = 1 norm S A norm S B
4 1 3 eqbrtrrd S CHStates A C B C A B norm S A = 1 1 norm S B
5 4 ex S CHStates A C B C A B norm S A = 1 1 norm S B
6 hstle1 S CHStates B C norm S B 1
7 6 ad2ant2r S CHStates A C B C A B norm S B 1
8 5 7 jctild S CHStates A C B C A B norm S A = 1 norm S B 1 1 norm S B
9 hstcl S CHStates B C S B
10 normcl S B norm S B
11 1re 1
12 letri3 norm S B 1 norm S B = 1 norm S B 1 1 norm S B
13 11 12 mpan2 norm S B norm S B = 1 norm S B 1 1 norm S B
14 9 10 13 3syl S CHStates B C norm S B = 1 norm S B 1 1 norm S B
15 14 ad2ant2r S CHStates A C B C A B norm S B = 1 norm S B 1 1 norm S B
16 8 15 sylibrd S CHStates A C B C A B norm S A = 1 norm S B = 1