Metamath Proof Explorer


Theorem le2sq

Description: The square function is nondecreasing on nonnegative reals. (Contributed by NM, 18-Oct-1999)

Ref Expression
Assertion le2sq A0AB0BABA2B2

Proof

Step Hyp Ref Expression
1 le2msq A0AB0BABAABB
2 recn AA
3 recn BB
4 sqval AA2=AA
5 sqval BB2=BB
6 4 5 breqan12d ABA2B2AABB
7 2 3 6 syl2an ABA2B2AABB
8 7 ad2ant2r A0AB0BA2B2AABB
9 1 8 bitr4d A0AB0BABA2B2