| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-hvcom |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) = ( 𝐶 +ℎ 𝐵 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( 𝐶 +ℎ 𝐵 ) ) ) |
| 3 |
2
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 +ℎ ( 𝐶 +ℎ 𝐵 ) ) ) |
| 4 |
|
ax-hvass |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( 𝐴 +ℎ ( 𝐵 +ℎ 𝐶 ) ) ) |
| 5 |
|
ax-hvass |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) = ( 𝐴 +ℎ ( 𝐶 +ℎ 𝐵 ) ) ) |
| 6 |
5
|
3com23 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) = ( 𝐴 +ℎ ( 𝐶 +ℎ 𝐵 ) ) ) |
| 7 |
3 4 6
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ 𝐶 ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ 𝐵 ) ) |