Metamath Proof Explorer


Theorem hvadd32

Description: Commutative/associative law. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvadd32
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( ( A +h C ) +h B ) )

Proof

Step Hyp Ref Expression
1 ax-hvcom
 |-  ( ( B e. ~H /\ C e. ~H ) -> ( B +h C ) = ( C +h B ) )
2 1 oveq2d
 |-  ( ( B e. ~H /\ C e. ~H ) -> ( A +h ( B +h C ) ) = ( A +h ( C +h B ) ) )
3 2 3adant1
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B +h C ) ) = ( A +h ( C +h B ) ) )
4 ax-hvass
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( A +h ( B +h C ) ) )
5 ax-hvass
 |-  ( ( A e. ~H /\ C e. ~H /\ B e. ~H ) -> ( ( A +h C ) +h B ) = ( A +h ( C +h B ) ) )
6 5 3com23
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h C ) +h B ) = ( A +h ( C +h B ) ) )
7 3 4 6 3eqtr4d
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( ( A +h C ) +h B ) )